OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 3 — Jan. 20, 2007
  • pp: 295–301

Three-dimensional direct-write lithography into photopolymer

Amy C. Sullivan, Matthew W. Grabowski, and Robert R. McLeod  »View Author Affiliations

Applied Optics, Vol. 46, Issue 3, pp. 295-301 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a three-dimensional direct-write lithography system capable of writing deeply buried, localized index structures into diffusion-mediated photopolymer. The system is similar to that used for femtosecond writing in glass, but has a number of advantages including greater flexibility in the writing media and the ability to use low power, inexpensive, continuous-wave lasers. This system writes index structures both parallel and perpendicular to the writing beam in different types of photopolymers, providing control over the feature size and shape. We demonstrate that this system can be used to create single-mode waveguides that are deeply embedded in the photopolymer medium.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(160.2900) Materials : Optical storage materials
(160.5470) Materials : Polymers

ToC Category:
Integrated Optics

Original Manuscript: May 26, 2006
Manuscript Accepted: August 18, 2006
Published: January 4, 2007

Amy C. Sullivan, Matthew W. Grabowski, and Robert R. McLeod, "Three-dimensional direct-write lithography into photopolymer," Appl. Opt. 46, 295-301 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  2. A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, "Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses," J. Appl. Phys. 93, 3724-3728 (2003). [CrossRef]
  3. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002). [CrossRef] [PubMed]
  4. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005). [CrossRef] [PubMed]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003). [CrossRef]
  6. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005). [CrossRef] [PubMed]
  7. B. L. Booth, "Low loss channel waveguides in polymers," J. Lightwave Technol. 7, 1445-1453 (1989). [CrossRef]
  8. L. Dhar, A. Hale, H. E. Katz, L. Schilling, M. G. Schnoes, and F. C. Schilling, "Recording media that exhibit high dynamic range for digital holographic data storage," Opt. Lett. 24, 487-489 (1999). [CrossRef]
  9. R. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerization methods for holography," in Diffractive and Holographic Optics Technology III, I.Cindrich and S. H.Lee, eds., Proc. SPIE 2689, 127-141 (1996).
  10. M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic data storage media for practical systems," in Practical Holography XVII and Holographic Materials IX, T. H.Jeong and S.H.Stevenson, eds., Proc. SPIE 5005, 29-37 (2003).
  11. R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, "Laser direct writing of channel waveguides using spin-on polymers," J. Appl. Phys. 66, 5156-5160 (1989). [CrossRef]
  12. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, "Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996). [CrossRef]
  13. A. K. Das, B. S. Chaudhari, and S. Ghosh, "Characteristics of polymeric optical passive single-mode waveguiding devices fabricated by an argon-ion laser," Appl. Opt. 37, 6779-6786 (1998). [CrossRef]
  14. S. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, "Three-dimensional integrated optics using polymers," IEEE J. Quantum Electron. 35, 1146-1155 (1999). [CrossRef]
  15. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999). [CrossRef]
  16. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  17. K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002). [CrossRef]
  18. M. Yonemura, A. Kawasaki, S. Kato, and M. Kagami, "Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication," Opt. Lett. 30, 2206-2208 (2005). [CrossRef] [PubMed]
  19. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005). [CrossRef] [PubMed]
  20. R. R. McLeod, A. C. Sullivan, M. W. Grabowski, T. Scott, "Hybrid integrated optics in volume holographic photopolymer," in Organic Holographic Materials and Applications II, K.Meerholz, ed., Proc. SPIE 5521, 55-62 (2004).
  21. K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, "Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional (meth)acrylates," Macromolecules 35, 7968-7975 (2002). [CrossRef]
  22. J. C. Urbach and R. W. Meier, "Properties and limitations of hologram recording materials," Appl. Opt. 8, 2269-2281 (1969). [CrossRef] [PubMed]
  23. InPhase Technologies, Tapestry Media, www.inphase-technologies.com.
  24. Aprilis, Inc., HMC media, www.aprilisinc.com/datastorage_media.htm.
  25. J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum Press, 1995).
  26. M. Pluta, Advanced Light Microscopy, Vol. 2, Specialized Methods (Elsevier, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited