OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 3 — Jan. 20, 2007
  • pp: 365–374

Dispersion multiplexing with broadband filtering for miniature spectrometers

E. C. Cull, M. E. Gehm, D. J. Brady, C. R. Hsieh, O. Momtahan, and A. Adibi  »View Author Affiliations


Applied Optics, Vol. 46, Issue 3, pp. 365-374 (2007)
http://dx.doi.org/10.1364/AO.46.000365


View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We replace the traditional grating used in a dispersive spectrometer with a multiplex holographic grating to increase the spectral range sensed by the instrument. The multiplexed grating allows us to measure three different, overlapping spectral bands on a color digital focal plane. The detector's broadband color filters, along with a computational inversion algorithm, let us disambiguate measurements made from the three bands. The overlapping spectral bands allow us to measure a greater spectral bandwidth than a traditional spectrometer with the same sized detector. Additionally, our spectrometer uses a static coded aperture mask in the place of a slit. The aperture mask allows increased light throughput, offsetting the photon loss at the broadband filters. We present our proof-of-concept dispersion multiplexing spectrometer design with experimental measurements to verify its operation.

© 2007 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 27, 2006
Revised Manuscript: September 8, 2006
Manuscript Accepted: September 25, 2006
Published: January 4, 2007

Citation
E. C. Cull, M. E. Gehm, D. J. Brady, C. R. Hsieh, O. Momtahan, and A. Adibi, "Dispersion multiplexing with broadband filtering for miniature spectrometers," Appl. Opt. 46, 365-374 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-3-365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Owen, D. E. Battey, M. J. Pelletier, and J. B. Slater, "New spectroscopic instrument based on volume holographic optical elements," in Proc. SPIE 2406, 260-267 (1995).
  2. D. J. Brady, "Multiplex sensors and the constant radiance theorem," Opt. Lett. 27, 16-18 (2002). [CrossRef]
  3. S. D. Schwab and R. L. McCreery, "Versatile, efficient Raman sampling with fiber optics," Anal. Chem. 56, 2199-2204 (1984). [CrossRef]
  4. J. Zhao, "Image curvature correction and cosmic removal for high-throughput dispersive Raman spectroscopy," Appl. Spectrosc. 57, 1368-1375 (2003). [CrossRef] [PubMed]
  5. M. J. E. Golay, "Multi-slit spectrometry," J. Opt. Soc. Am. 39, 437-444 (1949). [CrossRef] [PubMed]
  6. A. Girard, "Spectrometre a grilles," Appl. Opt. 2, 79-87 (1963). [CrossRef]
  7. R. N. Ibbett, D. Aspinall, and J. F. Grainger, "Real-time multiplexing of dispersed spectra in any wavelength region," Appl. Opt. 7, 1089-1094 (1968). [CrossRef] [PubMed]
  8. M. O. Harwitt and N. J. A. Sloane, Hadamard Transform Optics (Academic, 1979).
  9. A. Wuttig and R. Riesenberg, "Sensitive Hadamard transform imaging spectrometer with a simple MEMS," in Proc. SPIE 4881, 167-178 (2002). [CrossRef]
  10. Q. S. Hanley, P. J. Verveer, and T. M. Jovin, "Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy," Appl. Spectrosc. 53, 1-10 (1999). [CrossRef]
  11. M. E. Gehm, S. T. McCain, N. P. Pitsiantis, D. J. Brady, P. Potuluri, and M. E. Sullivan, "Static 2D aperture coding for multimodal multiplex spectroscopy," Appl. Opt. 54, 2965-2974 (2006). [CrossRef]
  12. A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications (Springer-Verlag, 1999).
  13. D. J. Schroeder, Astronomical Optics (Academic, 1987).
  14. S. T. McCain, M. E. Gehm, Y. Wang, N. P. Pitsianis, and D. J. Brady, "Coded aperture Raman spectroscopy for quantitative measurements of ethanol in a tissue phantom," Appl. Spectrosc. 60, 663-671 (2006). [CrossRef] [PubMed]
  15. HoloPlex Holographic Transmission Grating, Technical Rep. 1201 (Kaiser Optical Systems, Inc., 2001).
  16. B. E. Bayer, "Color imaging array," U.S. patent 3,971,065 (20 July 1976).
  17. G. Barbastathis and D. Psaltis, Volume Holographic Multiplexing Methods (Springer, 2000), pp. 21-59.
  18. H. Kogelnik, "Coupled wave theory for thick hologram grating," Bell Syst. Tech. J. 48, 2909-2948 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited