OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 30 — Oct. 20, 2007
  • pp: 7354–7364

Noise distribution of Mueller matrices retrieved with active rotating polarimeters

Yoshitate Takakura and Jawad Elsayed Ahmad  »View Author Affiliations

Applied Optics, Vol. 46, Issue 30, pp. 7354-7364 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two methods used to retrieve Mueller matrices from intensity measurements are revisited. It is shown that with symmetry or orthogonality considerations, numerical inversions of polarimetric equations can be avoided. With the obtained analytical formulas, noise propagation can be analyzed. If the intensity noise is a Gaussian white noise, the noise of Mueller matrices features remarkable properties. Mueller components are mutually correlated according to a scheme that involves decomposition into four blocks of 2 × 2 matrices. Variances are unequally distributed: the middle 2 × 2 block has the highest variance, the element on the bottom right has the lowest. These characteristics have been validated on experimental Mueller images of the free space.

© 2007 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 25, 2007
Revised Manuscript: August 27, 2007
Manuscript Accepted: August 27, 2007
Published: October 10, 2007

Yoshitate Takakura and Jawad Elsayed Ahmad, "Noise distribution of Mueller matrices retrieved with active rotating polarimeters," Appl. Opt. 46, 7354-7364 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  2. C. Brosseau, Fundamentals of Polarized Light--A Statistical Optics Approach (Wiley, 1998).
  3. H. Mueller, "The foundations of optics," J. Opt. Soc. Am. 38, 661-661 (1948).
  4. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).
  5. D. H. Goldstein, ed., "Polarization measurement, analysis, and applications V," Proc. SPIE 4819, 68-74 (2002).
  6. J. L. Pezzaniti and R. A. Chipman, "Mueller matrix imaging polarimetry," Opt. Eng. 34, 1558-1568 (1995). [CrossRef]
  7. D. H. Goldstein and R. A. Chipman, "Error analysis of a Mueller matrix polarimeter," J. Opt. Soc. Am. A 7, 693-700 (1990). [CrossRef]
  8. J. S. Tyo, "Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error," Appl. Opt. 41, 619-630 (2002). [CrossRef] [PubMed]
  9. S.-M. Nee, "Error analysis for Mueller matrix measurement," J. Opt. Soc. Am. A 20, 1651-1657 (2003). [CrossRef]
  10. R. A. Chipman, "Polarimetry" in Handbook of Optics (McGraw-Hill, 1994), Chap. 22.
  11. F. Le Roy-Brehonnet and B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997). [CrossRef]
  12. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, 1651-1655 (1995). [CrossRef]
  13. C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications (Wiley, 1971).
  14. A. Ruszczynski, Nonlinear Optimization (Princeton U. Press, 2006).
  15. J. S. Walker, Fast Fourier Transforms, 2nd ed. (CRC Press, 1996).
  16. A. J. Bouwens, Digital Instrumentation (McGraw-Hill, 1984).
  17. M. Alouini, F. Goudail, Ph. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, "Multispectral polarimetric imaging with coherent illumination: towards higher image contrast," Proc. SPIE 5432, 133-144 (2004). [CrossRef]
  18. G. L. Liu, Y. Li, and B. D. Cameron, "Polarization-based optical imaging and processing techniques with application to cancer diagnostics," Proc. SPIE 4617, 208-220 (2002). [CrossRef]
  19. J. W. Goodman, Statistical Optics (Wiley, 1985).
  20. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 1984).
  21. H. Neudecker, "Some theorems on matrix differentiation with special reference to Kronecker matrix products," J. Am. Stat. Assoc. 64, 953-963 (1969). [CrossRef]
  22. S. N. Savenkov and K. E. Yushtin, "Mueller matrix elements error distribution for polarimetric measurements," Proc. SPIE 5158, 251-259 (2003). [CrossRef]
  23. W. A. Shurcliff, Polarized Light: Production and Use (van Nostrand, 1964).
  24. A. Aiello and J. P. Woerdman, "Linear algebra for Mueller calculus," http://www.arxiv.org/abs/math-ph/0412061.
  25. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, "Optimization of retardance for a complete Stokes polarimeter," Opt. Lett. 25, 802-804 (2000). [CrossRef]
  26. C. S. Won and R. M. Gray, Stochastic Image Processing (Springer/Kluwer/Plenum Academic, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited