OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 30 — Oct. 20, 2007
  • pp: 7442–7451

Development of a handheld near-infrared imager for dynamic characterization of in vivo biological tissue systems

Ronald X. Xu, Bo Qiang, Jimmy J. Mao, and Stephen P. Povoski  »View Author Affiliations

Applied Optics, Vol. 46, Issue 30, pp. 7442-7451 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A handheld near-infrared imager was developed for real-time monitoring of tissue physiologic changes in response to dynamic compression stimuli. Both 2D and 3D imaging schemas were developed for reconstruction of tissue heterogeneities based on optical measurements. The handheld imager and the dynamic imaging schema were validated on both benchtop phantoms and in vivo human tissues. The benchtop tests demonstrated that the imager was able to reconstruct absorption properties of the embedded heterogeneity with accuracy and repeatability. The tests on in vivo human tissues demonstrated that the imager was able to generate various dynamic loading profiles with reproducibility and to detect tissue optical, mechanical, and physiologic changes under the dynamic loading condition.

© 2007 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Devices

Original Manuscript: June 8, 2007
Revised Manuscript: August 27, 2007
Manuscript Accepted: August 27, 2007
Published: October 11, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Ronald X. Xu, Bo Qiang, Jimmy J. Mao, and Stephen P. Povoski, "Development of a handheld near-infrared imager for dynamic characterization of in vivo biological tissue systems," Appl. Opt. 46, 7442-7451 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. X. Xu and S. P. Povoski, "Diffuse optical imaging and spectroscopy for cancer," Expert Rev. Med. Devices 4, 83-95 (2007). [CrossRef]
  2. "Optical properties spectra," http://omlc.ogi.edu/spectra/index.html, retrieved June 4, 2006.
  3. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005). [CrossRef] [PubMed]
  4. M. Ferrari, L. Mottola, and V. Quaresima, "Principles, techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-487 (2004). [CrossRef] [PubMed]
  5. A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).
  6. B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London , Ser. B 352, 707-716 (1997). [CrossRef]
  7. M. A. Franceschini and D. A. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004). [CrossRef] [PubMed]
  8. Y. Hoshi, "Functional near-infrared optical imaging: utility and limitations in human brain mapping," Psychophysiology 40, 511-520 (2003). [CrossRef] [PubMed]
  9. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, "Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle," Anal. Biochem. 174, 698-707 (1988). [CrossRef] [PubMed]
  10. M. Cope, "The development of a near-infrared spectroscopy system and its application for non-invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant," Ph.D. dissertation (University College London, 1991).
  11. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002). [CrossRef] [PubMed]
  12. D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005). [CrossRef] [PubMed]
  13. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, "Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study," J. Biomed. Opt. 9, 230-238 (2004). [CrossRef] [PubMed]
  14. S. Fantini, M. A. Fanceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, "Frequency-domain multichannel optical detector for non-invasice tissue spectroscopy and oximetry," Opt. Eng. 34, 32-42 (1995). [CrossRef]
  15. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  16. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-S288 (2004). [CrossRef] [PubMed]
  17. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  18. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002). [CrossRef] [PubMed]
  19. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, "Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure," J. Biomed. Opt. 10, 051504 (2005). [CrossRef] [PubMed]
  20. G. Gulsen, H. Yu, J. Wang, O. Nalcioglu, S. Merritt, F. Bevilacqua, A. J. Durkin, D. J. Cuccia, R. Lanning, and B. J. Tromberg, "Congruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors," Technol. Cancer Res. Treat. 1, 497-505 (2002).
  21. Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, "Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases," Neoplasia 5, 379-388 (2003). [PubMed]
  22. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003). [CrossRef] [PubMed]
  23. R. Xu, B. Qiang, J. Olsen, S. Povoski, L. Yee, and J. Mao, "Localization and functional parameter reconstruction of suspicious breast lesions by near infrared/ultrasound dual modal imaging," in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2005), Vol. 5, pp. 4473-4476.
  24. R. X. Xu, S. P. Povoski, L. D. Yee, J. O. Olsen, B. Qiang, and J. M. Mao, "Near infrared/ultrasound dual modal imaging for breast cancer detection," Proc. SPIE 6081, 44-53 (2006).
  25. S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003). [CrossRef] [PubMed]
  26. X. Cheng and X. Xu, "Study of the pressure effect in near infrared spectroscopy," Proc. SPIE 4955, 397-406 (2003). [CrossRef]
  27. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  28. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).
  29. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, "Noninvasive functional optical spectroscopy of human breast tissue," Proc. Natl. Acad. Sci. U.S.A. 98, 4420-4425 (2001). [CrossRef] [PubMed]
  30. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004). [CrossRef] [PubMed]
  31. Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, and H. Liu, "Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters," Appl. Opt. 42, 2960-2967 (2003). [CrossRef] [PubMed]
  32. C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, "Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements," Appl. Opt. 44, 2140-2153 (2005). [CrossRef] [PubMed]
  33. X. Cheng, J. M. Mao, X. Xu, M. Elmandjra, R. Bush, L. Christenson, B. O'Keefe, and J. Bry, "Post-occlusive reactive hyperemia in patients with peripheral vascular disease," Clin. Hemorheol Microcirc. 31, 11-21 (2004). [PubMed]
  34. X. Cheng, J.-M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, "Breast cancer detection by mapping hemoglobin concentration and oxygen saturation," Appl. Opt. 42, 6412-6421 (2003). [CrossRef] [PubMed]
  35. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  36. Q. Zhu, N. G. Chen, D. Piao, P. Guo, and X. Ding, "Design of near-infrared imaging probe with the assistance of ultrasound localization," Appl. Opt. 40, 3288-3303 (2001). [CrossRef]
  37. M. A. O'Leary, "Imaging with diffuse photon density waves," Ph.D. dissertation (University of Pennsylvania, 1996).
  38. R. Gaudette, "Constrained reconstruction techniques for diffuse optical tomography," Ph.D. dissertation (Tufts University, 2000).
  39. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (SIAM, 1998). [CrossRef]
  40. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, "Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method," J. Opt. Soc. Am. A 14, 325-342 (1997). [CrossRef]
  41. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Simulteneous scattering and absorption images of heterogeneous media using diffusive waves with the Rytov approximation," Proc. SPIE 2389, 320-327 (1995). [CrossRef]
  42. X. Cheng, X. Xu, S. Zhou, L. Wang, B. Hu, F. Li, M. Wang, C. Zhou, H. Li, and H. Zhang, "A novel optical scanning system for breast cancer imaging," Proc. SPIE 4244, 468-473 (2001). [CrossRef]
  43. D. Hueber, S. Fantini, A. Cerussi, and B. Barbieri, "New optical probe designs for absolute self calibrating NIR tissue hemoglobin measurements," Proc. SPIE 3597, 618-631 (1999). [CrossRef]
  44. R. Xu, B. Qiang, and J. Mao, "Near infrared imaging of tissue heterogeneity: probe design and sensitivity analysis," in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2005), Vol. 1, pp. 278-281. [PubMed]
  45. Y. C. Fung, Biomechanics--Mechanical Properties of Living Tissues (Springer-Verlag, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited