OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 30 — Oct. 20, 2007
  • pp: 7552–7565

Yb:YAG master oscillator power amplifier for remote wind sensing

A. K. Sridharan, S. Saraf, and R. L. Byer  »View Author Affiliations

Applied Optics, Vol. 46, Issue 30, pp. 7552-7565 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated key advances towards a solid-state laser amplifier at 1.03 μm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e 3 , e 5 , and e 8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6 J / c m 3 , a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier.

© 2007 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 26, 2007
Revised Manuscript: July 27, 2007
Manuscript Accepted: July 29, 2007
Published: October 18, 2007

A. K. Sridharan, S. Saraf, and R. L. Byer, "Yb:YAG master oscillator power amplifier for remote wind sensing," Appl. Opt. 46, 7552-7565 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Sridharan, "Yb:YAG master oscillator power amplifier and PPLN optical parametric amplifiers for remote wind sensing," Ph.D. dissertation (Stanford University, 2007).
  2. S. W. Henderson, R. M. Huffaker, M. J. Kavaya, C. P. Hale, J. R. Magee, and L. E. Myers, "Pulsed coherent solid-state 1.06 μm and 2.1 μm laser radar systems for remote velocity measurement," Proc. SPIE 1222, 118-129 (1990).
  3. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, "Coherent laser radar at 2 μm using solid-state lasers," IEEE Trans. Geosci. Remote Sens. 31, 4-15 (1993). [CrossRef]
  4. P. J. M. Suni, G. Gates, E. H. Yuen, D. L. Bruns, S. R. Vetorino, and T. J. Valle, "A diode-pumped 2 μm transceiver for ground and airborne doppler lidar measurements," in Proceedings of the 7th Conference on Coherent Laser Radar Applications and Technology (1993), pp. 206-209.
  5. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, "Coherent lidar airborne wind sensor II: flight test results at 2 and 10 μm," Appl. Opt. 35, 7117-7127 (1996). [CrossRef] [PubMed]
  6. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzer, and M. Petros, "1 J/pulse Q-switched 2 μm solid state laser," Opt. Lett. 31, 462-464 (2006). [CrossRef] [PubMed]
  7. V. Srivastava, J. Rothermal, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, and E. M. McCaul, "Wavelength dependence of backscatter by use of aerosol microphysics lidar data sets: application to 2.1-μm wavelength for space-based and airborne lidars," Appl. Opt. 40, 4759-4769 (2001). [CrossRef]
  8. S. M. Hannon and J. A. Thomson, "Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar," J. Mod. Opt. 41, 2175-2196 (1994). [CrossRef]
  9. S. W. Henderson, P. Gatt, D. Rees, and R. M. Huffaker, Laser Remote Sensing (CRC, 2005).
  10. J. E. Midwinter, "The theory of Q-switching applied to slow switching and pulse shaping for solid state lasers," Br. J. Appl. Phys. 16, 1125-1133 (1965). [CrossRef]
  11. E. Panarella and L. L. T. Bradley, "Controlled timewise redistribution of laser energy," IEEE J. Quantum Electron. QE-11, 181-184 (1975). [CrossRef]
  12. W. E. Schmid, "Pulse stretching in a Q-switched Nd:YAG laser," IEEE J. Quantum Electron. QE-16, 790-794 (1980). [CrossRef]
  13. J. Harrison, G. A. Rines, and P. F. Moulton, "Stable-relaxation-oscillation Nd lasers for long-pulse generation," IEEE J. Quantum Electron. 24, 1181-1187 (1988). [CrossRef]
  14. J. P. Roberts, K. W. Hosack, A. J. Taylor, J. Weston, and R. N. Ettelbrick, "Efficient frequency-doubled long pulse generation with a Nd:Glass/Nd:YAG oscillator-amplifier," Opt. Lett. 18, 429-431 (1993). [CrossRef] [PubMed]
  15. N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994). [CrossRef]
  16. W. Viöl and J. Uhlenbusch, "Generation of CO2 laser pulses by Q-switching and cavity dumping and their amplification by a microwave excited CO2 laser," J. Phys. D 29, 57-67 (1996). [CrossRef]
  17. W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences, 5th ed. (Springer-Verlag, 1999).
  18. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997). [CrossRef]
  19. M. Munz and G. Haag, "Saturation of the gain in laser amplifiers by feedback of amplified spontaneous emission (ASE)," Z. Phys. B 50, 79-86 (1983). [CrossRef]
  20. D. Lowenthal and J. M. Eggleston, "ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption," IEEE J. Quantum Electron. QE-22, 1165-1173 (1986). [CrossRef]
  21. Q. Lü and S. Dong, "Numerical and experimental investigation on ASE effects in high-power slab amplifiers," Opt. Laser Technol. 25, 309-314 (1993). [CrossRef]
  22. T. J. Kane and R. L. Byer, "62-dB gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986). [CrossRef] [PubMed]
  23. M. G. Knights, M. D. Thomas, E. P. Chicklis, G. A. Rines, and W. Seka, "Very high gain Nd:YLF amplifiers," IEEE J. Quantum Electron. 24, 712-715 (1988). [CrossRef]
  24. G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004). [CrossRef]
  25. M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004). [CrossRef]
  26. M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "The National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004). [CrossRef]
  27. L. F. Johnson, J. E. Geusic, and L. G. V. Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet," Appl. Phys. Lett. 7, 127-129 (1965). [CrossRef]
  28. H. Bruesselbach and D. S. Sumida, "69-W-average-power Yb:YAG laser," Opt. Lett. 21, 450-462 (1996). [CrossRef]
  29. L. D. DeLoach, S. A. Payne, L. L. Chase, L. L. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993). [CrossRef]
  30. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1069-1091 (1991). [CrossRef]
  31. T. Y. Fan, "Optimizing the efficiency and stored energy in quasi-three level lasers," IEEE J. Quantum Electron. 28, 2692-2697 (1992). [CrossRef]
  32. P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002). [CrossRef]
  33. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Geisen, "Nonlinear decay of the excited state in Yb:YAG," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.
  34. L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963). [CrossRef]
  35. R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2002).
  36. R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000). [CrossRef]
  37. W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).
  38. W. B. Jones, "Face pumped laser with diffraction limited output beam," U.S. patent 4,214,216 (22 July 1980).
  39. W. B. Jones, "Slab geometry laser," in Handbook of Solid-State Lasers (Marcel Dekker, 1989), pp. 581-612.
  40. T. J. Kane, R. C. Eckardt, and R. L. Byer, "Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. QE-19, 1351-1354 (1983). [CrossRef]
  41. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser--Part I: theory," IEEE J. Quantum Electron. QE-20, 289-301 (1984). [CrossRef]
  42. T. J. Kane, J. M. Eggleston, and R. L. Byer, "The slab geometry laser--Part II: thermal effects in a finite slab," IEEE J. Quantum Electron. QE-21, 1195-1210 (1985). [CrossRef]
  43. R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00 mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995). [CrossRef] [PubMed]
  44. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001). [CrossRef]
  45. A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, "Zig-zag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression," Appl. Opt. 45, 3340-3351 (2006). [CrossRef] [PubMed]
  46. A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5-W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994). [CrossRef] [PubMed]
  47. T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, "Edge-pumped quasi-three-level slab lasers: design and power scaling," IEEE J. Quantum Electron. 36, 205-219 (1999). [CrossRef]
  48. J. M. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989). [CrossRef]
  49. R. J. S. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, "Diode array pumped kilowatt laser," IEEE J. Sel. Top. Quantum Electron. 3, 53-58 (1997). [CrossRef]
  50. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, C.Marshall, ed. (Optical Society of America, 2001), pp. 2-4.
  51. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "Coherent combination of high-power, zigzag slab lasers," Opt. Lett. 31, 1247-1249 (2006). [CrossRef] [PubMed]
  52. B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, "High average power diode pumped slab laser," IEEE J. Quantum Electron. 28, 992-996 (1992). [CrossRef]
  53. L. A. Hackel, R. J. Beach, C. B. Dane, and L. E. Zapata, "Laser driver for soft-x-ray projection lithography," Appl. Opt. 32, 6914-6919 (1993). [CrossRef] [PubMed]
  54. M. J. Shoup III, J. H. Kelly, and D. L. Smith, "Design and testing of a large-aperture, high-gain, Brewster's angle zigzag Nd:glass slab amplifier," Appl. Opt. 36, 5827-5838 (1997). [CrossRef] [PubMed]
  55. N. Hodgson, T. Haase, and H. Weber, "Improved resonator design for rod lasers and slab lasers," Proc. SPIE 1277, 71-84 (1990).
  56. N. Hodgson and T. Haase, "Beam parameters, mode structure and diffraction losses of slab lasers with unstable resonators," Opt. Quantum Electron. 24, S903-S926 (1992). [CrossRef]
  57. N. Hodgson, S. Dong, and Q. Lu, "Performance of a 2.3-kW Nd:YAG slab laser system," Opt. Lett. 18, 1727-1729 (1993). [CrossRef] [PubMed]
  58. Y. Chen, A. Rapaport, T. Y. Chung, B. Chen, and M. Bass, "Fluorescence losses from Yb:YAG slab lasers," Appl. Opt. 42, 7157-7162 (2003). [CrossRef]
  59. Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--I," IEEE J. Quantum Electron. 40, 909-916 (2004). [CrossRef]
  60. Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers--II," IEEE J. Quantum Electron. 40, 917-927 (2004). [CrossRef]
  61. T. Y. Chung and M. Bass, "General analysis of slab lasers using geometrical optics," Appl. Opt. 46, 581-590 (2007). [CrossRef] [PubMed]
  62. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG," in Advanced Solid-State Lasers, T. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, 1994), paper YL2.
  63. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).
  64. A. Giesen, "High power thin disk lasers and applications," in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (IEEE, 2005), pp. 750-751.
  65. C. Stewen, M. Larionov, A. Giesen, K. Contag, and H. Hügel, "A 1-kW CW thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000). [CrossRef]
  66. H. E. Meissner and J. M. McMahon, "Composite solid state lasers of improved efficiency and beam quality," U.S. patent 5,563,899 (8 October 1996).
  67. N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).
  68. A. E. Siegman, Lasers (University Science Books, 1987).
  69. R. J. Beach, "Optimization of quasi-three level end-pumped Q-switched lasers," IEEE J. Quantum Electron. 31, 1606-1613 (1995). [CrossRef]
  70. W. Long, Northrup Grumman Space Technology (personal communication, 2005).
  71. D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillation and amplified spontaneous emission face-pumped total internal reflection lasers," Proc. SPIE 736, 74-82 (1987).
  72. H. T. Powell, "Composite polymer/glass edge cladding for Nova replacement disks," Tech. Rep. UCRL 50021-86 (Lawrence Livermore National Laboratory, 1986).
  73. A. K. Sridharan, S. Saraf, and R. L. Byer, "Method for fabricating zig-zag slabs for solid state lasers," U.S. patent 7,087,447 (8 August 2006).
  74. T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, "Coherent laser radar at 1.06 μm using Nd:YAG lasers," Opt. Lett. 12, 239-242 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited