OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 31 — Nov. 1, 2007
  • pp: 7604–7613

Zeroth-order phase-contrast technique

José Carlos Pizolato, Jr., Giuseppe Antonio Cirino, Cristhiane Gonçalves, and Luiz Gonçalves Neto  »View Author Affiliations


Applied Optics, Vol. 46, Issue 31, pp. 7604-7613 (2007)
http://dx.doi.org/10.1364/AO.46.007604


View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.

© 2007 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(070.6110) Fourier optics and signal processing : Spatial filtering

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: March 15, 2007
Revised Manuscript: August 16, 2007
Manuscript Accepted: September 10, 2007
Published: October 22, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
José Carlos Pizolato Jr., Giuseppe Antonio Cirino, Cristhiane Gonçalves, and Luiz Gonçalves Neto, "Zeroth-order phase-contrast technique," Appl. Opt. 46, 7604-7613 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-31-7604


Sort:  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann and D. P. Paris, "Binary Fraunhofer holograms, generated by computer," Appl. Opt. 6, 1739-1748 (1967). [CrossRef] [PubMed]
  2. J. W. Brown and A. W. Lohmann, "Computer-generated binary holograms," IBM J. Res. Dev. 14, 160-167 (1969). [CrossRef]
  3. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 351-361.
  4. W. H. Lee, "Sampled Fourier transform hologram generated by computer," Appl. Opt. 9, 639-643 (1970). [CrossRef] [PubMed]
  5. C. B. Burckhardt, "A simplification of Lee's method of generating holograms by computer," Appl. Opt. 9, 1949 (1970). [PubMed]
  6. D. C. Chu, J. R. Fienup, and J. W. Goodman, "Multiemulsion on-axis computer generated hologram," Appl. Opt. 12, 1386-1388 (1973). [CrossRef] [PubMed]
  7. E. Noponem and J. Turunen, "Complex-amplitude modulation by high-carrier-frequency diffractive elements," J. Opt. Soc. Am. A 13, 1422-1428 (1996). [CrossRef]
  8. V. Kettunen, P. Vahimaa, J. Turunen, and E. Noponen, "Zeroth-order coding of complex amplitude in two dimensions," J. Opt. Soc. Am. A 14, 808-815 (1997). [CrossRef]
  9. D. Mendlovic, G. Shabtay, U. Levi, Z. Zalevsky, and E. Marom, "Encoding technique for design of zero-order (on-axis) Fraunhofer computer-generated holograms," Appl. Opt. 36, 8427-8434 (1997). [CrossRef]
  10. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, "Encoding amplitude information onto phase-only filters," Appl. Opt. 38, 5004-5013 (1999). [CrossRef]
  11. P. Birch, R. Young, D. Budgett, and C. Chatwin, "Dynamic complex wave-front modulation with an analog spatial light modulator," Opt. Lett. 26, 920-922 (2001). [CrossRef]
  12. L. G. Neto, G. A. Cirino, R. D. Mansano, and P. Verdonck, "Implementation of Fresnel full complex-amplitude digital holograms," Opt. Eng. 43, 2640-2649 (2004). [CrossRef]
  13. L. G. Neto, D. Roberge, and Y. Sheng, "Programmable optical phase-mostly holograms with coupled-mode modulation liquid crystal television," Appl. Opt. 34, 1944-1950 (1995). [CrossRef] [PubMed]
  14. L. G. Neto, D. Roberge, and Y. Sheng, "Full range continuous complex modulation using two coupled-mode liquid crystal televisions," Appl. Opt. 35, 4567-4576 (1996). [CrossRef] [PubMed]
  15. R. W. Gerchberg and W. O. Saxton, "Practical algorithm for determination of phase from image and diffraction plane pictures," Optik (Stuttgart) 35, 237-246 (1972).
  16. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).
  17. F. Wyrowski, "Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation," J. Opt. Soc. Am. A 7, 383-393 (1990). [CrossRef]
  18. C. Soutar and K. Lu, "Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell," Opt. Eng. 33, 2704-2712 (1994). [CrossRef]
  19. C. Soutar, S. E. Monroe, Jr., and J. Knopp, "Complex characterisation of the Epson liquid crystal television," Proc. SPIE 1959, 269-277 (1993). [CrossRef]
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 220-222.
  21. L. G. Neto, "Implementation of image encryption using phase contrast techniques," Proc. SPIE 3386, 284-289 (1998). [CrossRef]
  22. P. C. Mogensen and J. Glückstad, "Phase-only optical decryption of a fixed mask," Appl. Opt. 40, 1226-1235 (2001). [CrossRef]
  23. R. L. Eriksen, P. C. Mongensen, and J. Glückstad, "Multiple beam optical tweezers generated by the generalized phase contrast method," Opt. Lett. 27, 267-269 (2002). [CrossRef]
  24. R. L. Eriksen, V. R. Daric, and J. Glückstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002). [PubMed]
  25. R. D. Mansano, P. Verdonk, and H. S. Maciel, "Anisotropic reactive ion etching in silicon, using a graphite electrode," Sens. Actuators A 65, 180-186 (1998). [CrossRef]
  26. L. G. Neto, L. B. Roberto, P. Verdonck, R. D. Mansano, G. A. Cirino, and M. A. Stefani, "Multiple line generation over high angle using a hybrid difractive-refractive phase element," Appl. Opt. 40, 211-218 (2001). [CrossRef]
  27. J. C. Pizolato, Jr. and L. G. Neto, "The zero-order phase-contrast technique," in Diffractive Optics and Micro-Optics Topical Meeting (Optical Society of America, 2004), paper DMA4.
  28. L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, "Design, fabrication and characterization of a full complex-amplitude modulation difractive optical element," J. Microlithogr. , Microfabr., Microsyst. 2, 96-104 (2003). [CrossRef]
  29. W. Kern and D. A. Puotinen, "Cleaning solution based on hydrogen peroxide for use in semiconductor technology," RCA Rev. 31, 187-206 (1970).
  30. W. Kern, ed., Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology and Application (Noyes, 1993), p. 443.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited