OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 31 — Nov. 1, 2007
  • pp: 7679–7692

Optical closure in a complex coastal environment: particle effects

Grace Chang, Andrew Barnard, and J. Ronald V. Zaneveld  »View Author Affiliations

Applied Optics, Vol. 46, Issue 31, pp. 7679-7692 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical dataset was collected on a mooring in the Santa Barbara Channel. Radiative transfer modeling and statistical analyses were employed to investigate sources of variability of in situ remote sensing reflectance [ r r s ( λ , 4   m ) ] and the fQ ratio. It was found that the variability of inherent optical properties and the slope of the particle size distribution (ξ) were strongly related to the variability of r r s ( λ , 4   m ) . The variability of fQ was strongly affected by particle type characteristics. A semianalytical radiative transfer model was applied and effects of variable particle characteristics on optical closure were evaluated. Closure was best achieved in waters composed of a mixture of biogenic and minerogenic particles.

© 2007 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: April 23, 2007
Revised Manuscript: September 5, 2007
Manuscript Accepted: September 6, 2007
Published: October 25, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Grace Chang, Andrew Barnard, and J. Ronald V. Zaneveld, "Optical closure in a complex coastal environment: particle effects," Appl. Opt. 46, 7679-7692 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. W. Preisendorfer, Hydrologic Optics, Vol. 1 (U.S. Department of Commerce, 1976).
  2. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  3. IOCCG, "Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications," in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z.-P.Lee, ed. (IOCCG, 2006).
  4. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988). [CrossRef]
  5. J. R. V. Zaneveld, "Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation," Appl. Opt. 21, 4146-4150 (1982). [CrossRef] [PubMed]
  6. K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, "Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system," J. Geophys. Res. 111, C07021 (2006). [CrossRef]
  7. C. S. Roesler, M. J. Perry, and K. L. Carder, "Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters," Limnol. Oceanogr. 34, 1510-1523 (1989). [CrossRef]
  8. C. L. Gallegos and P. J. Neale, "Partitioning absorption in case 2 waters: discrimination of dissolved and particulate components," Appl. Opt. 41, 4220-4233 (2002). [CrossRef] [PubMed]
  9. O. Schofield, T. Bergmann, M. Oliver, A. Irwin, G. Kirkpatrick, W. P. Bissett, M. A. Moline, and C. Orrico, "Inverting inherent optical signatures in the nearshore coastal waters at the Long Term Ecosystem Observatory," J. Geophys. Res. 109, C12S04 (2004). [CrossRef]
  10. D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester, and B. T. Vinyard, "Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide, Gymnodinium breve,"Limnol. Oceanogr. 42, 1240-1251 (1997). [CrossRef]
  11. G. Kirkpatrick, D. F. Millie, M. A. Moline, and O. Schofield, "Absorption-based discrimination of phytoplankton species in naturally mixed populations," Limnol. Oceanogr. 42, 467-471 (2000). [CrossRef]
  12. M. Behrenfeld and P. G. Falkowski, "A consumer's guide to phytoplankton primary productivity models," Limnol. Oceanogr. 42, 1479-1491 (1997). [CrossRef]
  13. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, "Carbon-based ocean productivity and phytoplankton physiology from space," Global Biogeochem. Cycles 19, GB1006 (2005). [CrossRef]
  14. G. J. Kirkpatrick, C. Orrico, M. A. Moline, M. Oliver, and O. M. Schofield, "Continuous hyperspectral absorption measurements of colored dissolved organic material in aquatic systems," Appl. Opt. 42, 6564-6568 (2003). [CrossRef] [PubMed]
  15. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001). [CrossRef]
  16. E. Boss, M. S. Twardowski, and S. Herring, "Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution," Appl. Opt. 40, 4885-4893 (2001). [CrossRef]
  17. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003). [CrossRef]
  18. E. Boss, D. Stramski, T. Bergmann, W. S. Pegau, and M. Lewis, "Why should we measure the optical backscattering coefficient?"Oceanogr. 17, 44-49 (2004a).
  19. E. Boss, W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "The particulate backscattering ratio at LEO-15 and its use to study particle composition and distribution," J. Geophys. Res. 109, C01014 (2004b). [CrossRef]
  20. C. S. Roesler and E. Boss, "Ocean color inversion yields estimates of the spectral beam attenuation coefficient while removing constraints on particle backscattering spectra," Geophys. Res. Lett. 30, 1468-1471 (2003). [CrossRef]
  21. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, G. C. Chang, and T. D. Dickey, "Particulate attenuation at the bottom boundary layer of a continental shelf," J. Geophys. Res. 106, 9509-9516 (2001). [CrossRef]
  22. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002). [CrossRef] [PubMed]
  23. M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, Jr., and Z. Ahmad, "Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure," Estuarine Coastal Shelf Sci. 68, 348-362 (2006). [CrossRef]
  24. T. J. Petzold, "Volume scattering functions for selected ocean waters," Scripps Institution of Oceanography Reference (Scripps Institution of Oceanography, 1972), pp. 72-78.
  25. A. H. Barnard, J. R. V. Zaneveld, and W. S. Pegau, "in situ determination of the remotely sensed reflectance and the absorption coefficient: closure and inversion," Appl. Opt. 38, 5108-5117 (1999). [CrossRef]
  26. H. R. Gordon and K. Ding, "Self-shading of in-water optical instruments," Limnol. Oceanogr. 37, 491-500 (1992). [CrossRef]
  27. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, "Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range," Appl. Opt. 45, 5294-5309 (2006). [CrossRef] [PubMed]
  28. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, "Absorption of visible and near-infrared light in water: the dependence on temperature and salinity," Appl. Opt. 36, 6035-6046 (1997). [CrossRef] [PubMed]
  29. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, "Scattering error correction of reflecting tube absorption meters," Proc. SPIE 2258, 44-55 (1994). [CrossRef]
  30. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  31. T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, "Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA," J. Geophys. Res. 112, C07011 (2007). [CrossRef]
  32. W. J. Emery and R. E. Thomson, Data Analysis Methods in Physical Oceanography (Pergamon, 1997).
  33. L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,"Limnol. Oceanogr. 26, 671-689 (1981). [CrossRef]
  34. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  35. R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters," Appl. Opt. 20, 177-184 (1981). [CrossRef] [PubMed]
  36. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  37. M. P. Otero and D. A. Siegel, "Spatial and temporal characteristics of sediment plumes and phytoplankton blooms in the Santa Barbara Channel," Deep-Sea Res. II 51, 1129-1139 (2004).
  38. D. A. Toole and D. A. Siegel, "Modes and mechanisms of ocean color variability in the Santa Barbara Channel," J. Geophys. Res. 106, 26985-27000 (2001). [CrossRef]
  39. G. C. Chang, A. H. Barnard, S. McLean, P. J. Egli, C. Moore, J. R. V. Zaneveld, T. D. Dickey, and A. Hanson, "in situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing," Appl. Opt. 45, 3593-3604 (2006). [CrossRef] [PubMed]
  40. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of biodirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996). [CrossRef] [PubMed]
  41. A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002). [CrossRef] [PubMed]
  42. H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001). [CrossRef]
  43. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998). [CrossRef]
  44. J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties," J. Geophys. Res. 100, 13135-13142 (1995). [CrossRef]
  45. A. Morel, "Optical properties of pure water and pure sea water," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1-24.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited