OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 31 — Nov. 1, 2007
  • pp: 7746–7750

Matching the emitting wavelength from a very-small-aperture laser to the resonant property of a nanometric C-aperture

Hongfeng Gai, Jia Wang, Qian Tian, Wei Xia, and Xiangang Xu  »View Author Affiliations


Applied Optics, Vol. 46, Issue 31, pp. 7746-7750 (2007)
http://dx.doi.org/10.1364/AO.46.007746


View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental method is proposed to increase the output power from a C-aperture very-small-aperture laser (VSAL). This method is based on the resonant property of a C aperture and the tunability of the emitting wavelength from a VSAL. The drive current of the VSAL is altered to tune the emitting wavelength. The experimental results indicate that, when the emitting wavelength matches the resonant wavelength of the C aperture fabricated on the VSAL, the output power is enhanced 7.2 times. So a strong output power from a C-aperture VSAL can be obtained with small power consumption. This study may be useful to the design and application of a VSAL.

© 2007 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(140.2020) Lasers and laser optics : Diode lasers
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 18, 2007
Revised Manuscript: September 14, 2007
Manuscript Accepted: September 30, 2007
Published: October 29, 2007

Citation
Hongfeng Gai, Jia Wang, Qian Tian, Wei Xia, and Xiangang Xu, "Matching the emitting wavelength from a very-small-aperture laser to the resonant property of a nanometric C-aperture," Appl. Opt. 46, 7746-7750 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-31-7746


Sort:  Year  |  Journal  |  Reset  

References

  1. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992). [CrossRef]
  2. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H.-J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999). [CrossRef]
  3. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recordings," Jpn. J. Appl. Phys. Part 1 42, 981-988 (2003). [CrossRef]
  4. J. Hashizume and F. Koyama, "Plasmon enhanced optical near-field probing of metal nanoaperture surface emitting laser," Opt. Express 12, 6391-6396 (2004). [CrossRef] [PubMed]
  5. J. Hashizume, S. Shinada, and F. Koyama, "Near-field optical probing using a microaperture GaInAs/GaAs surface emitting laser," Jpn. J. Appl. Phys. Part 2 41, L700-L702 (2002). [CrossRef]
  6. J. Hashizume, S. Shinada, F. Koyama, and K. Iga, "Reflection induced voltage change of surface emitting laser for optical probing," Opt. Rev. 9, 186-188 (2002). [CrossRef]
  7. Q. Gan, G. Song, G. Yang, Y. Xu, J. Gao, Y. Li, Q. Cao, L. Chen, H. Lu, Z. Chen, W. Zeng, and R. Yan, "Near-field scanning optical microscopy with an active probe," Appl. Phys. Lett. 88, 121111 (2006). [CrossRef]
  8. T. Ohno, A. V. Itagi, F. Chen, J. A. Bain, and T. E. Schlesinger, "Characterization of very small aperture GaN lasers," Proc. SPIE 5380, 393-402 (2004). [CrossRef]
  9. Q. Gan, G. Song, Y. Xu, J. Gao, Q. Cao, X. Pan, Y. Zhong, G. Yang, X. Zhu, and L. Chen, "Performance analysis of very-small-aperture lasers," Opt. Lett. 30, 1470-1472 (2005). [CrossRef] [PubMed]
  10. H. Gai, J. Wang, Q. Tian, W. Xia, and X. Xu, "Experimental investigation of the performance of an annular aperture and a circular aperture on the same very-small-aperture laser facet," Appl. Opt. 46, 6449-6453 (2007). [CrossRef] [PubMed]
  11. H. Gai, J. Wang, Q. Tian, W. Xia, and X. Xu, "Experimental investigation on the oscillation of very-small-aperture lasers with different depth grooves on their front facets," J. Opt. A 9, 998-1001 (2007). [CrossRef]
  12. H. Gai, J. Wang, Q. Tian, W. Xia, X. Xu, S. Han, and Z. Hao, "Experimental research on the performance of a very-small-aperture laser," J. Microsc. (to be published). [PubMed]
  13. X. Shi, R. L. Thornton, and L. Hesselink, "A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002). [CrossRef]
  14. Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "A C-shaped nanoaperture vertical-cavity surface-emitting laser for high-density near-field optical data storage," Proc. SPIE 6132, 61320J (2006). [CrossRef]
  15. Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization," Appl. Phys. Lett. 90, 191110 (2007). [CrossRef]
  16. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004). [CrossRef]
  17. K. Tanaka, M. Tanaka, and T. Sugiyama, "Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics," Appl. Phys. Lett. 87, 151116 (2005). [CrossRef]
  18. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006). [CrossRef]
  19. E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006). [CrossRef]
  20. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006). [CrossRef] [PubMed]
  21. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  22. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003). [CrossRef]
  23. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, "C-shaped nanoaperture-enhanced germanium photodetector," Opt. Lett. 31, 1519-1521 (2006). [CrossRef] [PubMed]
  24. X. Shi and L. Hesselink, "Design of a C aperture to achieve λ/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004). [CrossRef]
  25. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004). [CrossRef]
  26. F. Chen, J. Zhai, D. D. Stancil, and T. E. Schlesinger, "Fabrication of very small aperture laser (VSAL) from a commercial edge emitting laser," Jpn. J. Appl. Phys. Part 1 40, 1794-1795 (2001). [CrossRef]
  27. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).
  28. H. Gai, J. Wang, and Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations," Appl. Opt. 46, 2229-2233 (2007). [CrossRef] [PubMed]
  29. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  30. Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin., Ser. A 28, 1063-1076 (1984).
  31. "XFDTD 6.2" (REMCOM Inc., 2000).
  32. X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. SPIE 6106, 61061J (2006). [CrossRef]
  33. J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004). [CrossRef]
  34. K. Tanaka, H. Hosaka, K. Itao, M. Oumi, T. Niwa, T. Miyatani, Y. Mitsuoka, K. Nakajima, and T. Ohkubo, "Improvements in near-field optical performance using localized surface plasmon excitation by a scatterer-formed aperture," Appl. Phys. Lett. 83, 1083-1085 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited