OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 32 — Nov. 10, 2007
  • pp: 7942–7956

Design of a wavelength independent grating in the resonance domain

Tetsuya Hoshino, Saswatee Banerjee, Masahide Itoh, and Toyohiko Yatagai  »View Author Affiliations

Applied Optics, Vol. 46, Issue 32, pp. 7942-7956 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (4767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose using blazed gratings in the resonance domain with period larger than the wavelength for antireflection and polarization selection. The inherent problem in this region is wavelength dispersion, which is solved by analyzing the total reflectivity and electric field distribution. The positional relationship between the area of strong electric field, and the side and tip of the grating is crucial to the wavelength dispersion of total reflectivity.

© 2007 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(230.1950) Optical devices : Diffraction gratings
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Diffraction and Gratings

Original Manuscript: June 13, 2007
Revised Manuscript: September 12, 2007
Manuscript Accepted: September 14, 2007
Published: November 9, 2007

Tetsuya Hoshino, Saswatee Banerjee, Masahide Itoh, and Toyohiko Yatagai, "Design of a wavelength independent grating in the resonance domain," Appl. Opt. 46, 7942-7956 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. K.-W. Chien and H.-P. D. Shieh, "Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination," Appl. Opt. 43, 1830-1834 (2004). [PubMed]
  2. X. Yang, Y. Yan, and G. Jin, "Polarized light-guide plate for liquid crystal display," Opt. Express 13, 8349-8356 (2005). [PubMed]
  3. J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, "Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings," Appl. Phys. Lett. 83, 1918-1920 (2003).
  4. S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
  5. Y. Kanamori, M. Sasaki, and K. Hane, "Broadband antireflection gratings fabricated upon silicon substrates," Opt. Lett. 24, 1422-1424 (1999).
  6. H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Appl. Phys. Lett. 84, 457-459 (2003).
  7. Y.-G. Ju, G. Almuneau, T.-H. Kim, and B.-W. Lee, "Numerical analysis of high-index nano-composite encapsulant for light-emitting diodes," Jpn. J. Appl. Phys., Part 1 45, 2546-2549 (2006).
  8. A. Adawi, R. Kullock, J. Turner, C. Vasilev, D. Lidzey, A. Tahraoui, P. Fry, D. Gibson, E. Smith, C. Foden, M. Roberts, F. Qureshi, and N. Athanassopoulou, "Improving the light extraction efficiency of polymeric light emitting diodes using two-dimensional photonic crystals," Org. Electron. 7, 222-228 (2006).
  9. H. K. Cho, J. Jang, J.-H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K.-D. Lee, S. H. Kim, K. Lee, S.-K. Kim, and Y.-H. Lee, "Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes," Opt. Express 14, 8654-8660 (2006). [PubMed]
  10. J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, "Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes," Appl. Phys. Lett. 85, 142-144 (2004).
  11. H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, Y.-H. Lee, and D.-H. Jang, "Effect of nonradiative recombination on light emitting of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
  12. Y.-C. Kim, S.-H. Cho, and Y.-W. Song, "Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes," Appl. Phys. Lett. 89, 173502 (2006).
  13. B. C. Krummacher, M. K. Mathai, V. Choong, S. A. Choulis, F. So, and A. Winnacker, "General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes," J. Appl. Phys. 100, 054702 (2006).
  14. Y. Do, Y. Kim, Y.-W. Song, C.-O. Cho, H. Jeon, Y.-J. Lee, S.-H. Kim, and Y.-H. Lee, "Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals," Adv. Mater. 15, 1214-1218 (2003).
  15. Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, "Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure," J. Appl. Phys. 96, 7629-7636 (2004).
  16. M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers," Jpn. J. Appl. Phys. , Part 1 44, 3669-3677 (2005).
  17. Y. Kanamori, K. Kobayashi, H. Yugami, and K. Hane, "Subwavelength antireflection gratings for GaSb in visible and near-infrared," J. Appl. Phys. 42, 4020-4023 (2003).
  18. K. Asakawa and T. Hiraoka, "Nanopatterning with microdomains of block copolymers using reactive-ion etching selectivity," Jpn. J. Appl. Phys. , Part 1 41, 6112-6118 (2002).
  19. T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, "Thin-film waveguiding mode light extraction in organic electroluminescent," J. Appl. Phys. 97, 054505 (2005).
  20. A. Kitamura, S. Naka, H. Okada, and H. Onnagawa, "Improved light outcoupling in organic electroluminescent devices with random dots," Jpn. J. Appl. Phys. , Part 1 45, 613-616 (2005).
  21. H. Kikuta, S. Hino, A. Maruyama, and A. Mizutani, "Estimation method for the light extraction efficiency of light-emitting elements with a rigorous grating diffraction theory," J. Opt. Soc. Am. A 23, 1207-1213 (2006).
  22. H. W. Choia and S. J. Chua, "Honeycomb GaN micro-light-emitting diodes," J. Vac. Sci. Technol. B 24, 1071-1023 (2006).
  23. M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin, and H. X. Jiang, "Nitride deep-ultraviolet light-emitting diodes with microlens array," Appl. Phys. Lett. 86, 173504 (2005).
  24. N. C. Dasa, "Increase in midwave infrared light emitting diode light output due to substrate thinning and texturing," Appl. Phys. Lett. 90, 011111 (2007).
  25. S. Kiyohara, M. Fujiwara, F. Matsubayashi, and K. Mori, "Organic light-emitting microdevices fabricated by nanoimprinting technology using diamond molds," Jpn. J. Appl. Phys. , Part 1 44, 3686-3690 (2005).
  26. S. Hava and M. Auslender, "Design and analysis of low-reflection grating microstructures for a solar energy absorber," Sol. Energy Mater. Sol. Cells 61, 143-151 (2000).
  27. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. M. J. Zhao, and A. Wang, "Angle-dependent reflectance measurements on photovoltaic materials and solar cells," Opt. Commun. 172, 139-151 (1999).
  28. A. M. Nuijs and J. J. L. Horikx, "Diffraction and scattering at antiglare structures for display devices," Appl. Opt. 33, 4058-4068 (1994). [PubMed]
  29. Y. Kanamori, H. Kikuta, and K. Hane, "Broadband antireflection gratings for glass substrates fabricated fast atom beam etching," Jpn. J. Appl. Phys. , Part 2 39, L735-L737 (2000).
  30. H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, "High-efficiency nitride-based light-emitting diodes with moth-eye structure," Jpn. J. Appl. Phys. , Part 1 44, 7414-7417 (2005).
  31. A. Fujimoto and K. Asakawa, "Nano-structured surface fabrication for higher luminescent LED by self-assembled block copolymer," in 2005 International Microprocesses and Nanotechnology Conference (IEEE, 2005), pp. 76-77.
  32. F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003).
  33. T. Hoshino, M. Itoh, and T. Yatagai, "An antireflective grating in the resonance domain for displays," Appl. Opt. 46, 648-656 (2007). [PubMed]
  34. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451-2456 (2000). [PubMed]
  35. M. Piwinski, D. Dziczek, L. Klosowski, R. Srivastava, and S. Chwirot, "Coincidence study of excitation of cadmium atoms by electron impact," J. Phys. B 39, 1945-1953 (2006).
  36. R. E. Benenson, "Light polarization by transmission: a laboratory experiment," Eur. J. Phys. 21, 571-578 (2000).
  37. N. Stutzmann, H. Jagt, T. A. Tervoort, C. W. M. Bastiaansen, and P. Smith, "Novel polarized-light emitting polymer systems: II. use of form birefringent polarization-selective mirrors," Jpn. J. Appl. Phys. , Part 1 40, 5972-5975 (2001).
  38. S. Omori, "Polarization and color separator using binary phase grating with subwavelength period," Opt. Rev. 8, 254-259 (2001).
  39. D. Delbeke, R. Baets, and P. Muys, "Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating," Appl. Opt. 43, 6157-6165 (2004). [PubMed]
  40. D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, "Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain," Opt. Lett. 29, 754-756 (2004). [PubMed]
  41. X. Deng, J. J. Wang, and F. Liu, "Wideband antireflective polarizers based on integrated diffractive multilayer microstructures," Opt. Lett. 31, 344-346 (2006). [PubMed]
  42. X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
  43. L. Zhou and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett. 30, 1434-1436 (2005). [PubMed]
  44. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, 1975). [PubMed]
  45. A. Tagaya, S. Ishii, K. Yokoyama, E. Higuchi, and Y. Koike, "The advanced highly scattering optical transmission polymer backlight for liquid crystal displays," Jpn. J. Appl. Phys. , Part 1 41, 2241-2248 (2002).
  46. B. Päivänranta, N. Heikkilä, and M. Kuittinen, "Antireflective subwavelength structured surfaces with enhanced color properties," J. Opt. Soc. Am. A 24, 1680-1686 (2007).
  47. C. Huh, K.-S. Lee, E.-J. Kang, and S.-J. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
  48. T.-X. Lee, C.-Y. Lin, S.-H. Ma, and C.-C. Sun, "Analysis of position-dependent light extraction of GaN-based LEDs," Opt. Express 13, 4175-4179 (2005). [PubMed]
  49. J. B. Cole, S. Banerjee, and M. Haftel, "High accuracy nonstandard finite-difference time-domain algorithms for computational electromagnetics: applications to optics and photonics," in Advances in the Applications of Nonstandard Finite Difference Schemes, R. E. Mickens, ed. (World Scientific, 2006), pp. 89-189.
  50. J. B. Cole and S. Banerjee, "Applications of nonstandard finite difference models to computational electromagnetics," J. Diff. Eqns. 9, 1099-1112 (2003).
  51. S. Banerjee, J. B. Cole, and T. Yatagai, "Calculation of dffraction characteristics of subwavelength conducting gratings using a high accuracy nonstandard finite-difference time-domain method," Opt. Rev. 12, 274-280 (2005).
  52. J. B. Cole, "High-accuracy Yee algorithm based on nonstandard finite differences: new developments and verfications," IEEE Trans. Antennas Propag. 50, 1185-1191 (2002).
  53. S. Banerjee, T. Yatagai, and J. B. Cole, "Boosting light transmission through interfaces using subwavelength Moth-eye structuring: nonstandard FDTD simulations," in Proceeding of the 11th Microoptics Conference (MOC'05) (Japan Society of Applied Physics, 2005), Paper H48, pp. 212-213.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited