OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 33 — Nov. 20, 2007
  • pp: 8045–8051

Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges  »View Author Affiliations


Applied Optics, Vol. 46, Issue 33, pp. 8045-8051 (2007)
http://dx.doi.org/10.1364/AO.46.008045


View Full Text Article

Enhanced HTML    Acrobat PDF (1635 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon fluorescence microscopy is widely applied to biology and medicine to study both the structure and dynamic processes in living cells. The main issue is the slow acquisition rate due to the point scanning approach limiting the multimodal detection ( x , y , z , t ) . To extend the performances of this powerful technique, we present a time-resolved multifocal multiphoton microscope (MMM) based on laser amplitude splitting. An array of 8 × 8 foci is created on the sample that gives a direct insight of the fluorescence localization. Four-dimensional (4D) imaging is obtained by combining simultaneous foci scanning, time-gated detection, and z displacement. We illustrate time-resolved MMM capabilities for 4D imaging of a photosensitizer inside living colon cancer cells. The aim of this study is to have a better understanding of the photophysical processes implied in the photosensitizer reactivity.

© 2007 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 9, 2007
Revised Manuscript: September 25, 2007
Manuscript Accepted: September 27, 2007
Published: November 19, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, "Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells," Appl. Opt. 46, 8045-8051 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-33-8045


Sort:  Year  |  Journal  |  Reset  

References

  1. R. Yuste, "Fluorescence microscopy today," Nat. Methods 2, 902-904 (2005). [CrossRef] [PubMed]
  2. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef] [PubMed]
  3. J. Bewersdorf, A. Egner, and S. W. Hell, Handbook of Biological Confocal Microscopy, J. Pawley, ed. (Springer, 2006), pp. 550-560. [CrossRef]
  4. J. Bewersdorf, R. Pick, and S. H. Hell, "Multifocal multiphoton microscopy," Opt. Lett. 23, 655-657 (1998). [CrossRef]
  5. M. Straub and S. H. Hell, "Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope," Appl. Phys. Lett. 73, 1769-1771 (1998). [CrossRef]
  6. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, "Real time two-photon absorption microscopy using multipoint excitation," J. Microsc. 192, 217-226 (1998). [CrossRef]
  7. K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, S. Kawata, and T. Takamatsu, "Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays," Opt. Commun. 174, 7-12 (2000). [CrossRef]
  8. K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, "Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier," J. Microsc. 194, 528-531 (2000). [CrossRef] [PubMed]
  9. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, "Multiphoton multifocal microscopy exploiting a diffractive optical element," Opt. Lett. 28, 1918-1920 (2003). [CrossRef] [PubMed]
  10. J. E. Jureller, H. Y. Kim, and N. F. Scherer, "Stochastic scanning multiphoton multifocal microscopy," Opt. Express 14, 3406-3414 (2006). [CrossRef] [PubMed]
  11. D. Fittinghoff, P. Wiseman, and J. Squier, "Wide-field multiphoton and temporally decorrelated multifocal multiphoton microscopy," Opt. Express 7, 273-279 (2000). [CrossRef] [PubMed]
  12. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, "High efficiency beam splitter for multifocal multiphoton microscopy," J. Microsc. 201, 368-376 (2001). [CrossRef] [PubMed]
  13. M. Fricke and T. Nielsen, "Two-dimensional imaging scanning by multifocal multiphoton microscopy," Appl. Opt. 44, 2984-2988 (2005). [CrossRef] [PubMed]
  14. S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, "Fluorescence-lifetime imaging with a multifocal two-photon microscope," Opt. Lett. 29, 2884-2886 (2004). [CrossRef]
  15. L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, "Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy," Appl. Phys. B 84, 379-383 (2006). [CrossRef]
  16. K. Steenkeste, S. Lécart, A. Deniset, P. Pernot, P. Eschwège, S. Ferlicot, S. Lévêque-Fort, R. Briandet, and M. P. Fontaine-Aupart, "Ex vivo fluorescence imaging of normal and malignant urothelial cells to enhance early diagnosis," Photochem. Photobiol. 83, 1157-1166 (2007). [CrossRef] [PubMed]
  17. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index," J. Microsc. 169, 391-405 (1993). [CrossRef]
  18. A. Deniset, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, "Multifocal multiphoton fluorescence lifetime microscopy for biomedical applications," Proc. SPIE 5860, 59-66 (2005).
  19. J. Y. Matroule, C. M. Carthy, D. J. Granville, O. Jolois, D. W. Hunt, and J. Piette, "Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-a methylester photosensitization," Oncogene 20, 4070-4084 (2001). [CrossRef] [PubMed]
  20. L. Delanaye, M. A. Bahri, F. Tfibel, M. P. Fontaine-Aupart, A. Mouithys-Mickalad, B. Heine, J. Piette, and M. Hoebecke, "Physical and chemical properties of pyropheophorbide-a methylester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-α-phosphatidylcholine vesicles," Photochem. Photobiol. Sci. 5, 317-325 (2006). [CrossRef] [PubMed]
  21. S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, "Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes," Anal. Chem. 73, 4486-4490 (2001). [CrossRef] [PubMed]
  22. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, J. D. Hares, and A. K. L. Dymoke-Bradshaw, "High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging," Opt. Lett. 29, 2249-2251 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited