OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 33 — Nov. 20, 2007
  • pp: 8170–8180

Study of the statistics of water vapor mixing ratio determined from Raman lidar measurements

Pierre Bosser, Olivier Bock, Christian Thom, and Jacques Pelon  »View Author Affiliations

Applied Optics, Vol. 46, Issue 33, pp. 8170-8180 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The statistical properties of atmospheric water vapor mixing ratio (WVMR) determined as the ratio of Raman lidar signals backscattered from water vapor and nitrogen molecules are studied. It is shown that WVMR estimates can be biased by a small percentage at low signal photon-counting rates due to fluctuations in the nitrogen signal in the denominator of the ratio, the magnitude of the bias being linked to the signal-to-noise ratio of the nitrogen signal. This is particularly important when unbiased estimates are required as in the case of climate studies and global positioning system (GPS) signal calibration. Different bias corrections and a modified ratio formulation are proposed in order to correct or eliminate this bias. The method is successfully applied in processing signals obtained with an experimental Raman lidar system devoted to calibrate GPS signals for slant path delays. It is shown to reduce biases into negligible values in both WVMR and wet path delay estimates in the range interval of 0–7 km.

© 2007 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.3920) Atmospheric and oceanic optics : Meteorology
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 20, 2007
Revised Manuscript: October 2, 2007
Manuscript Accepted: October 5, 2007
Published: November 19, 2007

Pierre Bosser, Olivier Bock, Christian Thom, and Jacques Pelon, "Study of the statistics of water vapor mixing ratio determined from Raman lidar measurements," Appl. Opt. 46, 8170-8180 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. Wang, D. J. Carlson, D. B. Parsons, T. F. Hock, D. Lauritsen, H. L. Cole, K. Beierle, and E. Chamberlain, "Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication," Geophys. Res. Lett. 30, 1860, doi:10.1029/2003GL016985 (2003). [CrossRef]
  2. D. D. Turner, B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C Tobin, "Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience," J. Atmos. Ocean. Technol. 20, 117-132 (2003). [CrossRef]
  3. L. M. Miloshevich, H. Vömel, D. N. Whiteman, B. M Lesht, F. J. Schmidlin, and F. Russo, "Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation," J. Geophys. Res. 111, doi:1029/2005JD00683 (2006). [CrossRef]
  4. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, "Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere," Appl. Opt. 31, 3068-3082 (1992). [CrossRef] [PubMed]
  5. H. E. Revercomb, D. Turner, D. Tobin, R. Knuteson, W. Feltz, J. Barnard, J. Bosenberg, S. Clough, D. Cook, R. Ferrare, J. Goldsmith, S. Gutman, R. Halthore, B. Lesht, J. Liljegren, H. Line, J. Michalsky, V. Morris, W. Porch, S. Richardson, B. Schmid, M. Splitt, T. Van Hove, E. Westwater, and D. Whiteman, "The atmospheric radiation measurement (ARM) programs water vapor intensive observation periods: overview, initial accomplishments, and future challenges," Bull. Am. Meteorol. Soc. 84, 217-236 (2003). [CrossRef]
  6. B. J. Soden, D. D. Turner, B. M. Lesht, and L. M. Miloshevich, "An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement program," J. Geophys. Res. 109, D04105, doi:10.1029/2003JD003828 (2004). [CrossRef]
  7. L. Bengtsson, G. Robinson, R. Anthes, K. Aonashi, A. Dodson, G. Elgered, G. Gendt, R. Gurney, M. Jietai, C. Mitchell, M. Mlaki, A. Rhodin, P. Silvestrin, R. Ware, R. Watson, and W. Wergen, "The use of GPS measurements for water vapor determination," Bull. Am. Meteorol. Soc. 84, 1249-1258 (2003). [CrossRef]
  8. O. Bock, J. Tarniewicz, C. Thom, J. Pelon, and M. Kasser, "Study of external path delay correction techniques for high accuracy height determination with GPS," Phys. Chem. Earth Part A Solid Earth Geod. 26, 165-171 (2001b). [CrossRef]
  9. J. Tarniewicz, O. Bock, J. Pelon, and C. Thom, "Raman lidar for external GPS path delay calibration devoted to high accuracy height determination," Phys. Chem. Earth Part A Solid Earth Geod. 27, 329-333 (2002).
  10. J. L. Davis, T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, "Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length," Radio Sci. 20, 1593-1607 (1985). [CrossRef]
  11. R. Santerre, "Impact of GPS satellite sky distribution," Manuscr. Geod. 16, 28-53 (1991).
  12. O. Bock, J. Tarniewicz, C. Thom, and J. Pelon, "Effect of small-scale atmospheric inhomogeneity on positioning accuracy with GPS," Geophys. Res. Lett. 28, 2289 (2001a). [CrossRef]
  13. G. Thayer, "An improved equation for the radio refractive index of air," Radio Sci. 9, 803-807 (1974). [CrossRef]
  14. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley-Interscience, 1984) 521 pp.
  15. D. N. Whiteman, "Examination of the traditional Raman lidar technique; I. evaluating the temperature-dependent lidar equations," Appl. Opt. 42, 2571-2592 (2003). [CrossRef] [PubMed]
  16. C. M. Penney and M. Lapp, "Raman-scattering cross sections for water vapor," J. Opt. Soc. Am. 66, 422-425 (1976). [CrossRef]
  17. J. Tarniewicz, "Étude d'une méthode de sondage de la vapeur d'eau dans la troposphère appliquée à la correction de mesures GPS pour l'altimétrie de haute précision," Université de Versailles-Saint-Quentin (2005).
  18. E. P. Shettle and R. W. Fenn, "Models for the aerosols of the lower atmosphere and the effects on humidity variations on their optical properties," Optical Physics Division, Air Force Geophysics Laboratory in Environmental Research Papers (1979).
  19. D. Bruneau, S. Delmonte, and J. Pelon, "Modeling of Tm,Ho:YAG and Tm,Ho:YLF 2-m Lasers and Calculation of Extractable Energies," Appl. Opt. 37, 8406-8419 (1998). [CrossRef]
  20. D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, "Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar," J. Atmos. Ocean. Technol. 19, 37-50 (2002). [CrossRef]
  21. H. Vömel, H. Selkirk, L. Miloshevich, J. Valverde, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz, "Radiation dry bias of the Vaisala RS92 humidity sensor," J. Atmos. Ocean. Technol. 6, 953-963 (2007). [CrossRef]
  22. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited