OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 33 — Nov. 20, 2007
  • pp: 8202–8210

Dual interband cascade laser based trace-gas sensor for environmental monitoring

Gerard Wysocki, Yury Bakhirkin, Stephen So, Frank K. Tittel, Cory J. Hill, Rui Q. Yang, and Matthew P. Fraser  »View Author Affiliations


Applied Optics, Vol. 46, Issue 33, pp. 8202-8210 (2007)
http://dx.doi.org/10.1364/AO.46.008202


View Full Text Article

Enhanced HTML    Acrobat PDF (2220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of an interband cascade laser (ICL) based spectroscopic trace-gas sensor for the simultaneous detection of two atmospheric trace gases is reported. The sensor performance was evaluated using two ICLs capable of targeting formaldehyde ( H 2 CO ) and ethane ( C 2 H 6 ) . Minimum detection limits of 3.5   ppbV for H 2 CO and 150   pptV for C 2 H 6 was demonstrated with a 1   s integration time. The sensor was deployed for field measurements of H 2 CO , and laboratory quantification of both formaldehyde and ethane are reported. A cross comparison of the atmospheric concentration data for H 2 CO with data collected by a collocated commercial H 2 CO sensor employing Hantzsch reaction based fluorometric detection was performed. These results show excellent agreement between these two different approaches for trace-gas quantification. In addition, laboratory experiments for dual gas quantification show accurate, fast response with no crosstalk between the two gas channels.

© 2007 Optical Society of America

OCIS Codes
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.3420) Remote sensing and sensors : Laser sensors
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: July 18, 2007
Manuscript Accepted: September 27, 2007
Published: November 19, 2007

Citation
Gerard Wysocki, Yury Bakhirkin, Stephen So, Frank K. Tittel, Cory J. Hill, Rui Q. Yang, and Matthew P. Fraser, "Dual interband cascade laser based trace-gas sensor for environmental monitoring," Appl. Opt. 46, 8202-8210 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-33-8202


Sort:  Year  |  Journal  |  Reset  

References

  1. M. Loewenstein, H. Jost, J. Grose, J. Eilers, D. Lynch, S. Jensen, and J. Marmie, "Argus: a new instrument for the measurement of the stratospheric dynamical tracers, N2O and CH4," Spectrochim. Acta Part A 58, 2329-2345 (2002). [CrossRef]
  2. A. Fried, J. R. Drummond, B. Henry, and J. Fox, "Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS," Appl. Opt. 30, 1916-1932 (1991). [CrossRef] [PubMed]
  3. W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Using a wavelength-modulated quantum cascade laser to measure NO Concentrations in the parts-per-billion range for vehicle emissions certification," Appl. Spectrosc. 56, 706-714 (2002). [CrossRef]
  4. G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005). [CrossRef]
  5. A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Koehler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser," Appl. Phys. B 74, 95-99 (2002). [CrossRef] [PubMed]
  6. D. Halmer, S. Thelen, P. Hering, and M. Muertz, "Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer," Appl. Phys. B 85, 437-443 (2006). [CrossRef]
  7. S. C. Herndon, D. D. Nelson, Jr., Y. Li, and M.S. Zahniser, "Determination of line strengths for selected transitions in the v2 band relative to the v1 and v5 bands of H2CO," J. Quant. Spectrosc. Radiat. Transfer 90, 207-216 (2005). [CrossRef]
  8. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, "Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies," Appl. Phys. B 67, 317-330 (1998). [CrossRef]
  9. K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 1034 (2006). [CrossRef]
  10. W. W. Bewley, C. L. Canedy, M. Kim, C. S. Kim, J. A. Nolde, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating to 269 K at λ = 4.05 μm," Electron. Lett. 43, 39-40 (2007). [CrossRef]
  11. C. L. Canedy, W. W. Bewley, M. Kim, C. S. Kim, J. A. Nolde, D. C. Larrabee, J. R. Lindle, I. Vurgaftman, and J. R. Meyer, "High-temperature interband cascade lasers emitting at lambda = 3.6-4.3 μm," Appl. Phys. Lett. 90, 181120 (2007). [CrossRef]
  12. R. Q. Yang, C. J. Hill, K. Mansour, Y. Qiu, A. Soibel, R. Muller, and P. Echternach, "Distributed feedback mid-infrared interband cascade lasers at thermoelectric cooler temperatures," IEEE J. Sel. Top. Quantum Electron. (to be published).
  13. Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, "Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system," J. Geophys. Res. 109, D16S08 (2004). [CrossRef]
  14. R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, "Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer," Proc. SPIE 5738, 318-331 (2005). [CrossRef]
  15. D. B. Oh, M. E. Paige, and D. S. Bomse, "Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers," Appl. Opt. 37, 2499-2501 (1998). [CrossRef]
  16. P. Werle, "Signal processing strategies for tunable diode laser spectroscopy," Proc. SPIE 2112, 19-30 (1994). [CrossRef]
  17. C. P. Rinsland, N. B. Jones, B. J. Connor, S. W. Wood, A. Goldman, T. M. Stephen, F. J. Murcray, L. S. Chiou, R. Zander, and E. Mahieu, "Multiyear infrared solar spectroscopic measurements of HCN, CO, C2H6, and C2H2 tropospheric columns above Lauder, New Zealand (45°S latitude)," J. Geophys. Res. 107, 4185.1.1-4185.1.12 (2002).
  18. Y. Zhao, K. Strong, Y. Kondo, M. Koike, Y. Matsumi, H. Irie, C. P. Rinsland, N. B. Jones, K. Suzuki, H. Nakajima, H. Nakane, and I. Murata, "Spectroscopic measurements of tropospheric CO, C2H6, C2H2, and HCN in northern Japan," J. Geophys. Res. 107, 4343.2.1-4343.2.13 (2002).
  19. L. I. Kleinman, P. H. Daum, D. Imre, Y. N. Lee, J. L. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and J. Rudolph, "Ozone production rates and hydrocarbon reactivity in five urban areas: a cause for high ozone concentrations in Houston," Geophys. Res. Lett. 29, 1467.105.1-1467.105.4 (2002). [CrossRef]
  20. T. B. Ryerson, M. Trainer, W. M. Angevine, C. A. Brock, R. W. Dissly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, J. S. Holloway, G. Hubler, R. O. Jakoubek, W. C. Kuster, J. A. Neuman, D. K. Nicks, D. D. Parrish, J. M. Roberts, and D. T. Sueper "Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas," J. Geophys. Res. 108, 4249.8.1-4249.8.24 (2003). [CrossRef]
  21. http://www.permapure.com/TechNotes/Formaldehyde.htm.
  22. Texas Commission on Environmental Quality (2006) Point Source Emission Inventory Database, provided by TCEQ Technical Analysis Division, Austin, TX.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited