OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 34 — Dec. 1, 2007
  • pp: 8264–8267

Applications of a microlens array and a photomask to the laser microfabrication of a periodic photopolymer rod array

Shigeki Matsuo, Takashi Miyamoto, Takuro Tomita, and Shuichi Hashimoto  »View Author Affiliations

Applied Optics, Vol. 46, Issue 34, pp. 8264-8267 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the simultaneous multipoint fabrication of polymer rods by the femtosecond laser processing of a negative photoresist using a microlens array (MLA). The rods were periodically arranged in the form of an array corresponding to the MLA and free-standing on a glass substrate. The use of a photomask enabled us to define the contour of the rod array. Furthermore, sample translation techniques were demonstrated for the effective fabrication of large-area structures.

© 2007 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:

Original Manuscript: August 2, 2007
Revised Manuscript: October 12, 2007
Manuscript Accepted: October 15, 2007
Published: November 26, 2007

Shigeki Matsuo, Takashi Miyamoto, Takuro Tomita, and Shuichi Hashimoto, "Applications of a microlens array and a photomask to the laser microfabrication of a periodic photopolymer rod array," Appl. Opt. 46, 8264-8267 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. I. Miyamoto, K. Sugioka, S. Katayama, H. Helvajian, F. H. Dausinger, and K. Itoh, eds., Proceedings of The Fourth International Congress on Laser Advanced Materials Processing (2006).
  2. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001). [CrossRef]
  3. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003). [CrossRef]
  4. Y. Nakata, T. Okada, and M. Maeda, "Nano-sized hollow bump array generated by single femtosecond laser pulse," Jpn. J. Appl. Phys. Part 2 42, L1452-L1454 (2003). [CrossRef]
  5. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005). [CrossRef]
  6. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005). [CrossRef]
  7. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, "Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization," Opt. Express 14, 800-809 (2006). [CrossRef] [PubMed]
  8. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005). [CrossRef]
  9. Placing the photomask exactly at the focal plane caused damage of the photomask; thus the photomask was slightly shifted from the focal plane.
  10. T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high-aspect ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005). [CrossRef]
  11. A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996). [CrossRef] [PubMed]
  12. F. M. Bain, A. E. Vasdekis, and G. A. Turnbull, "Holographic recording of sub-micron period gratings and photonic crystals in the photoresist SU8," Proc. SPIE 5931, 59311B (2005). [CrossRef]
  13. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  14. W. H. Tch, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, "SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication," Appl. Phys. Lett. 84, 4095-4097 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited