OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 35 — Dec. 10, 2007
  • pp: 8499–8505

Analytical model of spectrometer-based two-beam spectral interferometry

Zhilin Hu, Yinsheng Pan, and Andrew M. Rollins  »View Author Affiliations


Applied Optics, Vol. 46, Issue 35, pp. 8499-8505 (2007)
http://dx.doi.org/10.1364/AO.46.008499


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an analytical model of signal formation in spectrometer-based two-beam spectral interferometry. Considering the pixel size, the optical resolution and the spectral resolution of the spectrometer, and dispersion, the model represents the signal recorded by a spectrometer based on a diffraction grating and linear detector array. The model is general, but degenerates to more familiar forms with simplifying assumptions. The model is validated by comparison with experimental measurements, where it is shown that the model can accurately predict both signal fall-off and axial resolution for Fourier-domain optical coherence tomography imaging. The model may be useful for determining design specifications and expected performance parameters for spectrometers for spectral interferometry.

© 2007 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Spectroscopy

History
Original Manuscript: April 25, 2007
Revised Manuscript: October 10, 2007
Manuscript Accepted: October 24, 2007
Published: December 7, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Zhilin Hu, Yinsheng Pan, and Andrew M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt. 46, 8499-8505 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-35-8499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 11, 43-48 (1995). [CrossRef]
  3. F. Hausler and M. W. Lindmer, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  4. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  5. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. d. Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). [CrossRef] [PubMed]
  6. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, "Real-time fiber-based multi-functional spectral domain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005). [CrossRef] [PubMed]
  7. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  8. J. F. d. Boer, B. Cense, B. H. Park, M. C. Pierce, G. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain-compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  9. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  11. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Un-arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998). [CrossRef] [PubMed]
  12. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  13. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  14. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  15. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). [CrossRef] [PubMed]
  16. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). [CrossRef] [PubMed]
  17. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006). [CrossRef] [PubMed]
  18. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).
  19. Z. Hu, M. Zhao, J. A. Izatt, and A. M. Rollins, "Enhancement of FDOCT imaging range by sub-pixel spectral shifting," in Coherence on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005 (Optical Society of America, 2005), p. CFA7.
  20. Z. Wang, Z. Yuan, H. Wang, and Y. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006). [CrossRef] [PubMed]
  21. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004). [CrossRef] [PubMed]
  22. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography--principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  23. Z. Hu and A. M. Rollins, "Theory of two beam interference with arbitrary spectra," Opt. Express 14, 12751-12759 (2006). [CrossRef] [PubMed]
  24. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. d. Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited