OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 36 — Dec. 20, 2007
  • pp: 8619–8626

Multispectral method for skin imaging: development and validation

Tianchen Shi and Charles A. DiMarzio  »View Author Affiliations

Applied Optics, Vol. 46, Issue 36, pp. 8619-8626 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A visible wide field multispectral system for comprehensive imaging of skin chromophores and blood vessels has been implemented, and an inhomogeneous Monte Carlo model of photon migration with randomly distributed blood vessels embedded in dermis has been developed. Predetermined nonlinear transforms have been obtained to address the nonlinear interdependent relationship among diffusive reflectance spectra, skin physiology properties, and geometry. For validation, in addition to real skin experiments and phantoms experiments, two alternative methods for blood vessel imaging have been used on the same set of subjects to compensate for the lack of ground truth for skin subsurface imaging.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6930) Medical optics and biotechnology : Tissue
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 18, 2007
Revised Manuscript: October 17, 2007
Manuscript Accepted: October 25, 2007
Published: December 19, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Tianchen Shi and Charles A. DiMarzio, "Multispectral method for skin imaging: development and validation," Appl. Opt. 46, 8619-8626 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissue in vivo," Appl. Opt. 38, 2105-2115 (1999). [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  3. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  4. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, "Multispectral tissue characterization with time-resolved detection of diffusely scattered white light," Opt. Lett. 18, 1697-1699 (1993). [CrossRef] [PubMed]
  5. M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, "Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue," Appl. Opt. 30, 4474-4476 (1991). [CrossRef] [PubMed]
  6. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, "Portable, high-bandwidth frequency domain photon migration instrument for tissue spectroscopy," Opt. Lett. 19, 1934-1936 (1994). [CrossRef] [PubMed]
  7. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  8. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  9. S. A. Prahl and I. A. Vitkin, "Determination of optical properties of turbid media using pulsed photothermal radiometry," Phys. Med. Bio. 37, 1203-1207 (1992). [CrossRef]
  10. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Bio. 44, 967-981 (1999). [CrossRef]
  11. I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004). [CrossRef] [PubMed]
  12. M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, and J. S. Nelson, "Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy," Phys. Med. Bio. 42, 41-50 (1997). [CrossRef]
  13. S. L. Jacques, I. S. Saidi, and F. K. Tittel, "Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy," Proc. SPIE 2128, 231-237 (1994). [CrossRef]
  14. W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, "Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media," Phys. Med. Bio. 42, 51-65 (1997). [CrossRef]
  15. I. Nishidate, Y. Aizu, and H. Mishina, "Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images," Opt. Lett. 30, 2128-2130 (2005). [CrossRef] [PubMed]
  16. K. Zuzak, M. Schaeberle, E. Lewis, and I. Levin, "Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion," Anal. Chem. 74, 2021-2028 (2002). [CrossRef] [PubMed]
  17. R. R. Anderson, J. Hu, and J. A. Parrish, "Optical radiation transfer in the human skin and applications in in vivo remittance spectroscopy," in Bioengineering and Skin (MTP Press, 1980), pp. 253-265.
  18. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  19. M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tsunazawa, "Analysis of nonlinear relation for skin hemoglobin imaging," Opt. Express 9, 802-812 (2001). [CrossRef] [PubMed]
  20. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sternborg, "Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers," Opt. Lett. 27, 246-248 (2002). [CrossRef]
  21. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, "Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy," Med. Phys. 22, 1209-1217 (1995). [CrossRef] [PubMed]
  22. M. Firbank, E. Okada, and D. T. Delpy, "Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy," Phys. Med. Bio. 44, 967-981 (1999).
  23. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy," Appl. Opt. 44, 2072-2081 (2005). [CrossRef] [PubMed]
  24. P. R. Gill, W. Murray, and M. H. Wright, "The Levenberg-Marquardt Method," in Practical Optimization (Academic, 1981), pp. 136-137.
  25. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989). [CrossRef] [PubMed]
  26. S. L. Jacques, "Skin optics," Oregon Medical Laser Center News (Jan., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited