OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 4 — Feb. 1, 2007
  • pp: 456–462

Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system

Ihsan Fsaifes, Catherine Lepers, Mounia Lourdiane, Philippe Gallion, Vincent Beugin, and Philippe Guignard  »View Author Affiliations

Applied Optics, Vol. 46, Issue 4, pp. 456-462 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

© 2007 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 7, 2006
Manuscript Accepted: September 8, 2006

Ihsan Fsaifes, Catherine Lepers, Mounia Lourdiane, Philippe Gallion, Vincent Beugin, and Philippe Guignard, "Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system," Appl. Opt. 46, 456-462 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Salehi, "Code division multiple-access techniques in optical fiber networks. I. Fundamental principles," IEEE Trans. Commun. 37, 824-833 (1989). [CrossRef]
  2. P. Prucnal, M. Santoro, and T. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightwave Technol. 4, 547-554 (1986). [CrossRef]
  3. J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code division multiple-access communication systems," J. Lightwave Technol. 8, 478-491 (1990). [CrossRef]
  4. N. Wada and K. Kitayama, "A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection," J. Lightwave Technol. 17, 1758-1765 (1999). [CrossRef]
  5. G. E. Town, K. Chan, and G. Yoffe, "Design and performance of high-speed optical pulse-code generators using optical fiber Bragg gratings," IEEE J. Sel. Top. Quantum Electron . 5, 1325-1331 (1999). [CrossRef]
  6. M. Kavehrad and D. Zaccarin, "Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources," J. Lightwave Technol. 13, 534-545 (1995). [CrossRef]
  7. A. A. Hassan, J. E. Hershey, and N. A. Riza, "Spatial optical OCDMA," IEEE J. Sel. Areas Commun. 13, 609-613 (1995). [CrossRef]
  8. J. A. Salehi and E. G. Paek, "Holographic CDMA," IEEE Trans. Commun. 43, 2434-2438 (1995). [CrossRef]
  9. J. E. McGeehan, S. M. R. M. Nezam, P. Saghari, A. E. Willner, R. Omrani, and P. V. Kumar, "Experimental demonstration of OCDMA transmission using a three-dimensional (time-wavelength-polarization) codeset," J. Lightwave Technol. 23, 3282-3289 (2005). [CrossRef]
  10. A. Keshavarzian and J. A. Salehi, "Optical orthogonal code: acquisition in fiber optic CDMA system via the simple serial search method," IEEE Trans. Commun. 50, 473-483 (2002). [CrossRef]
  11. Y. Chang, R. Fuji-Hara, and Y. Miao, "Combinatorial constructions of optimal optical orthogonal codes with weight 4," IEEE Trans. Inf. Theory. 49, 1283-1292 (2003). [CrossRef]
  12. J. G. Zhang and G. Picchi, "Tunable prime code encoder/decoder for all optical CDMA applications," Electron. Lett. 29, 1211-1212 (1993). [CrossRef]
  13. G.-C. Yang and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks, Mobile Communications Series (Artech House, 2002).
  14. L. R. Chen and P. W. E. Smith, "Demonstration of incoherent wavelength-encoding/time-spreading optical CDMA using chirped moiré gratings," IEEE Photon. Technol. Lett. 12, 1281-1283 (2000). [CrossRef]
  15. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings," J. Lightwave Technol. 19, 1352-1365 (2001). [CrossRef]
  16. T. J. Eom, S.-J. Kim, T.-Y. Kim, C.-S. Park, U.-C. Paek, and B. H. Lee, "Realization of true-time-delay using cascaded long-period fiber gratings: theory and applications to the optical pulse multiplication and temporal encoder/decoder," J. Lightwave Technol. 23, 597-608 (2005). [CrossRef]
  17. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, "Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999). [CrossRef]
  18. S. Zahedi and J. A. Salehi, "Analytical comparison of various fiber-optic CDMA receiver structures," J. Lightwave Technol. 18, 1718-1727 (2000). [CrossRef]
  19. X. Wang and K. Kitayama, "Analysis of beat noise in coherent and incoherent time-spreading OCDMA," J. Lightwave Technol. 22, 2226-2235 (2004). [CrossRef]
  20. B. Ni and J. S. Lehnert, "Performance of an incoherent temporal spreading OCDMA system with broadband light sources," J. Lightwave Technol. 23, 2206-2214 (2005). [CrossRef]
  21. L. Tancevski and L. A. Rush, "Impact of beat noise on the performance of 2D optical CDMA systems," IEEE Commun. Lett. 4, 264-266 (2000). [CrossRef]
  22. M. Rochette and L. A. Rusch, "Spectral efficiency of OCDMA systems with coherent pulsed sources," J. Lightwave Technol. 23, 1033-1038 (2005). [CrossRef]
  23. S. V. Maric, "New family of algebraically design optical orthogonal codes for use in CDMA fiber optic networks," Electron. Lett. 29, 538-539 (1993). [CrossRef]
  24. S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, "A new family of optical code sequences for use in spread-spectrum fiber optic local area networks," IEEE Trans. Commun. 41, 1217-1221 (1993). [CrossRef]
  25. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, "Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems," J. Lightwave Technol. 19, 1274-1281 (2001). [CrossRef]
  26. D. Z. Anderson, V. Mizuehi, T. Erdogan, and A. E. White, "Production of in-fiber gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993). [CrossRef]
  27. I. Fsaifes, C. Lepers, A.-F. Obaton, and P. Gallion, "DS-OCDMA encoder/decoder performance analysis using optical low coherence reflectometry," J. Lightwave Technol. 24, 3121-3128 (2006). [CrossRef]
  28. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  29. H. Fathallah and L. A. Rusch, "Robust optical FFH-CDMA communications: coding in place of frequency and temperature controls," J. Lightwave Technol. 17, 1284-1293 (1999). [CrossRef]
  30. I. Fsaifes, C. Lepers, M. Lourdiane, R. Gabet, and P. Gallion, "Pulsed laser source coherence time impairments in a direct detection DS-OCDMA system," Conference on Lasers and Electro-Optics (2006), paper CWH6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited