OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 4 — Feb. 1, 2007
  • pp: 472–482

Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy

J. Barry McManus  »View Author Affiliations


Applied Optics, Vol. 46, Issue 4, pp. 472-482 (2007)
http://dx.doi.org/10.1364/AO.46.000472


View Full Text Article

Enhanced HTML    Acrobat PDF (2664 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A complete matrix description of ray-optic propagation in an astigmatic multipass cell is presented, with expressions for the coupling of coordinates. A pair of transforms puts the 4 × 4 paraxial system matrix into block-diagonal form, allowing a solution using Sylvester's theorem. A variation on the Jones matrix calculus is employed wherein the ray coordinates on both resonator mirrors are simultaneously represented as a single state of the system. The formulations are applicable to resonators with any degree of astigmatism and axial twist. Examples are presented of beam paths and the boundary shapes of beam spots. The shape of the pattern boundaries, as a function of the coordinate coupling coefficient, influences the practical availability of patterns.

© 2007 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(230.5750) Optical devices : Resonators
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Geometrical optics

History
Original Manuscript: June 20, 2006
Manuscript Accepted: July 31, 2006

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Citation
J. Barry McManus, "Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy," Appl. Opt. 46, 472-482 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-4-472


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. McManus, P. L Kebabian, and M. S. Zahniser, "Astigmatic mirror multiple pass absorption cells for long pathlength spectroscopy," Appl. Opt. 34, 3336-3348 (1995). [CrossRef] [PubMed]
  2. D. R. Herriott and H. J. Schulte, "Folded optical delay lines," Appl. Opt. 4, 883-889 (1965). [CrossRef]
  3. J. A. Silver, "Simple dense pattern optical multipass cells," Appl. Opt. 44, 6545-6556 (2005). [CrossRef] [PubMed]
  4. L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, "Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy," Rev. Sci. Instrum. 73, 2079-3085 (2002). [CrossRef]
  5. J. B. McManus, D. D. Nelson, J. H. Shorter, R. Jimenez, S. Herndon, S. Saleska, and M. Zahniser, "A high precision pulsed quantum cascade laser spectrometer for measurements of stable isotopes of carbon dioxide," J. Mod. Opt. 52, 2309-2321 (2005). [CrossRef]
  6. J. B. McManus, M. S. Zahniser, D. D. Nelson, L. R. Williams, and C. E. Kolb, "Infrared laser spectrometer with balanced absorption for measurement of isotopic ratios of carbon gases," Spectrochim. Acta 58, 2465-2479 (2002). [CrossRef]
  7. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  8. D. Weidmann, G. Wysocki, C. Oppenheimer, and F. K. Tittel, "Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes," Appl. Phys. B 80, 255-260 (2005). [CrossRef]
  9. R. Korman, R. Königstedt, U. Parchatka, J. Lelieveld, and H. Fisher, "QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation," Rev. Sci. Instrum. 76, 075102 (2005). [CrossRef]
  10. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, "Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection," Appl. Phys B 75, 281-288 (2002). [CrossRef]
  11. J. B. McManus, D. Nelson, M. Zahniser, L. Mechold, M. Osiac, J. Röpcke, and A. Rousseau, "TOBI: a two-laser beam infrared system for time-resolved plasma diagnostics of infrared active compounds," Rev. Sci. Instrum. 74, 2709-2713 (2003). [CrossRef]
  12. R. C. Jones, "A new calculus for the treatment of optical systems. I. Description and discussion of the calculus," J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  13. A. E. Siegman, Lasers (University Science Books, 1986).
  14. A. A. Tovar and L. W. Casperson, "Generalized Sylvester theorems for periodic applications in matrix optics," J. Opt. Soc. Am. A 12, 578-590 (1995). [CrossRef]
  15. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited