OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 4 — Feb. 1, 2007
  • pp: 495–501

Optical characterization of porous silicon and crystalline silicon by the Kramers–Kronig method

Abdollah MortezaAli, Reza S. Dariani, Saeideh Asghari, and Zeynel Bayindir  »View Author Affiliations

Applied Optics, Vol. 46, Issue 4, pp. 495-501 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electronic structure of porous silicon (PS) has been characterized by optical reflectance spectra analyses. Using a Cary-500 spectrometer, the reflectance spectra of PS are measured in the photon energy range of 0.4–6 eV. The spectral responses of optical constants are calculated for PS and Si by Kramers–Kronig analysis. The analysis clarified strong evidence for widening and direct bandgaps for PS samples. Also, the optical constants of PS layers as a function of porosity have been studied. Our results indicate that PS retains some of the characteristic optical features of crystalline Si. However, in the visible region, PS shows that the imaginary part of the complex refractive index increases, and the real part decreases as porosity increases. This feature could be related to the surface roughness of PS and its role in surface absorption and scattering.

© 2007 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(160.0160) Materials : Materials
(160.4760) Materials : Optical properties
(290.3030) Scattering : Index measurements
(350.3850) Other areas of optics : Materials processing

ToC Category:

Original Manuscript: June 27, 2006
Revised Manuscript: September 14, 2006
Manuscript Accepted: September 15, 2006

Abdollah MortezaAli, Reza S. Dariani, Saeideh Asghari, and Zeynel Bayindir, "Optical characterization of porous silicon and crystalline silicon by the Kramers-Kronig method," Appl. Opt. 46, 495-501 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Bomchil, A. Halimaoui, and R. Herino, "Porous silicon: the material and its applications to SOI technologies," Microelectron. Eng. 8, 293-310 (1988). [CrossRef]
  2. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990). [CrossRef]
  3. S. F. Chuang, S. D. Collins, and R. L. Smith, "Porous silicon microstructure as studied by transmission electron microscopy," Appl. Phys. Lett. 55, 1540-1542 (1989). [CrossRef]
  4. D. A. G. Bruggeman, "Berechnung verschidener physikalischer konstanten von heterogenen substanzen," Ann. Phys. 24, 636-679 (1935). [CrossRef]
  5. M. G. Berger, C. Dieker, M. Thonissen, L. Vescan, H. Luth, and H. Munder, "Porosity superlattices: a new class of Si heterostructures," J. Phys. D 27, 1333-1336 (1994). [CrossRef]
  6. R. J. Martin-Palma, P. Herrero, R. Guerrero-Lemus, J. D. Moreno, and J. M. Martinez-Duart, "Cross-section TEM and optical characterization of porous silicon multilayer stacks," J. Mater. Sci. Lett. 17, 845-847 (1998). [CrossRef]
  7. V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).
  8. V. Lucarini, F. Bassani, K. E. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Riv. Nuovo Cimento 26, 1-120 (2003).
  9. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1997).
  10. T. S. Robinson, "Optical constants by reflection," Proc. Phys. Soc. London Sect. B 65, 910-911 (1952). [CrossRef]
  11. G. A. Nevill Connell, "Optical properties of amorphous metals using a ratio reflectance method," Appl. Opt. 29, 4560-4562 (1990). [CrossRef] [PubMed]
  12. H. R. Philipp and E. A. Taft, "Optical constants of silicon in the region 1 to 10 eV," Phys. Rev. 120, 37-38 (1960). [CrossRef]
  13. P. Menna, G. Francia, and V. La Ferra, "Porous silicon in solar cells: a review and a description of its application as an AR coating," Sol. Energy Mater. Sol. Cells 37, 13-24 (1995). [CrossRef]
  14. W. Theib, "Optical properties of porous silicon," Surf. Sci. Rep. 29, 91-192 (1997). [CrossRef]
  15. S. Hilbrich, R. Arens-Fischer, L. Küpper, W. Theiss, M. G. Berger, M. Krüger, and M. Thönissen, "The application of porous silicon interference filters in optical sensors," Thin Solid Films 297, 250-253 (1997). [CrossRef]
  16. S. M. Vernon, N. M. Kalkhoran, H. P. Maruska, and W. D. Halverson, "High performance porous silicon solar cell development," in Proceedings of the First World Conference on Photovoltaic Energy Conversion (IEEE, 1994), pp. 1583-1586.
  17. V. Y. Yerokhov and I. I. Melnyk, "Porous silicon in solar cell structures: a review of achievements and modern directions of further use," Renewable Sustainable Energy Rev. 3, 291-322 (1999). [CrossRef]
  18. C. Pickering, M. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, "Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon," J. Phys. C 17, 6535-6552 (1984). [CrossRef]
  19. N. Koshida, H. Koyama, Y. Suda, Y. Yamamoto, M. Araki, T. Saito, K. Sato, N. Sato, and S. Shin, "Optical characterization of porous silicon by synchrotron radiation reflectance spectra analyses," Appl. Phys. Lett. 63, 2774-2776 (1993). [CrossRef]
  20. L. Wang and A. Zunger, "Dielectric constants of silicon quantum dots," Phys. Rev. Lett. 73, 1039-1042 (1994). [CrossRef] [PubMed]
  21. G. Sanders and Y. Chang, "Theory of optical properties of quantum wires in porous silicon," Phys. Rev. B 45, 9202-9213 (1992). [CrossRef]
  22. D. T. Pierce and W. E. Spicer, "Electronic structure of amorphous Si from photoemission and optical studies," Phys. Rev. B 5, 3017-3029 (1972). [CrossRef]
  23. K. Barla, R. Herino, G. Bomchil, J. C. Pfister, and A. Freund, "Determination of lattice parameter and elastic properties of porous silicon by x-ray diffraction," J. Cryst. Growth 63, 727-732 (1984). [CrossRef]
  24. V. Lucarini, Y. Ino, K. E. Peiponen, and M. Kuwata-Gonokami, "Detection and correction of the misplacement error in terahertz spectroscopy by application of singly subtractive Kramers-Kronig relations," Phys. Rev. B 72, 125107 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited