OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 4 — Feb. 1, 2007
  • pp: 559–569

Theoretical wave structure function when the effect of the outer scale is significant

Robert L. Lucke and Cynthia Y. Young  »View Author Affiliations

Applied Optics, Vol. 46, Issue 4, pp. 559-569 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (608 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wave structure function (WSF) for a plane wave, calculated from the basic Rytov theory, is usually expressed as 6.88 ( r / r 0 ) 5 / 3 , but this does not include the effect of a finite outer scale (or of a nonzero inner scale) of turbulence. When separation distance r is only 5% of the outer scale, this expression overpredicts the WSF by a factor of approximately 2. Accurate evaluations of the Rytov formulas are given for the WSFs of plane and spherical waves in Kolmogorov and von Karman turbulence and for the structure function of the atmosphere's index of refraction. Simple formulas make the results easy to use.

© 2007 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(110.3000) Imaging systems : Image quality assessment

ToC Category:
Atmospheric and ocean optics

Original Manuscript: May 2, 2006
Manuscript Accepted: September 6, 2006

Robert L. Lucke and Cynthia Y. Young, "Theoretical wave structure function when the effect of the outer scale is significant," Appl. Opt. 46, 559-569 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 1998), especially Subsection 6.4 and Appendix III.
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  3. J. W. Goodman, Statistical Optics (Wiley, 1985), Chap. 8.
  4. R. Beland, "Propagation through atmospheric optical turbulence," in Atmospheric Propagation of Radiation, Vol. 2 of The Infrared and Electro-Optical Systems Handbook, J. S. Accetta and D. L. Shumaker, eds. (SPIE, 1993), pp. 157-232.
  5. S. F. Clifford, "The classical theory of wave propagation in a turbulent medium," in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, 1978), pp. 9-43.
  6. D. L. Fried, "Optical heterodyne detection of an atmospherically distorted signal wave front," Proc. IEEE 55, 57-67 (1967). [CrossRef]
  7. V. P. Lukin, "Estimation of behavior of outer scale of turbulence from optical measurements," Proc. SPIE 4538, 74-84 (2002).
  8. D. I. Cooper, W. E. Eichinger, J. Archuleta, L. Hipps, J. Kao, and J. Prueger, "An advanced method for deriving latent energy flux from a scanning Raman lidar," Agron. J. (to be published).
  9. V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Wiley, 1985).
  10. C. E. Coulman, J. Vernin, Y. Coqueuniot, and J. L. Caccia, "Outer scale of turbulence appropriate to modeling refractive-index structure profiles," Appl. Opt. 27, 155-160 (1988). [CrossRef] [PubMed]
  11. A. Ziad, M. Schock, G. A. Chanan, M. Troy, R. Dekany, B. F. Lane, J. Borgnino, and F. Martin, "Comparison of measurements of the outer scale of turbulence by three different techniques," Appl. Opt. 43, 2316-2324 (2004). [CrossRef] [PubMed]
  12. G. Rousset and J.-L. Beuzit, "The COME-ON/ADONIS systems," in Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge U. Press, 1999), pp. 171-203.
  13. F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J.-P. Gaffard, and F. Merkle, "Adaptive optics on a 3.6-m telescope: results and performance," Astron. Astrophys. 250, 280-290 (1991).
  14. G. Rousset, P.-Y. Madec, and F. Rigaut, "Temporal analysis of turbulent wavefronts sensed by adaptive optics," in Atmospheric, Volume and Surface Scattering and Propagation, ICO Topical Meeting, A. Consortini, ed. (ICO, 1991), pp. 77-80.
  15. D. L. Fried, DLFried@cruzio.com (personal communication, 8 July 2004).
  16. A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, "Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons," Astron. Astrophys. 422, 1123-1127 (2004). [CrossRef]
  17. R. L. Lucke, "Synthetic aperture ladar simulations with phase screens and Fourier propagation," in IEEE Aerospace Conference Proceedings (IEEE, 2004), Vol. 3, p. 1788.
  18. R. F. Lutomirski and H. T. Yura, "Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere," J. Opt. Soc. Am. 61, 482-487 (1971). [CrossRef]
  19. L. C. Andrews, S. Vester, and C. E. Richardson, "Analytic expressions for the wave structure function based on a bump spectral model for refractive index fluctuations," J. Mod. Opt. 40, 931-938 (1993). [CrossRef]
  20. V. V. Voitsekhovich, "Outer scale of turbulence: comparison of different models," J. Opt. Soc. Am. A 12, 1346-1353 (1995). [CrossRef]
  21. C. Y. Young, A. J. Masino, F. E. Thomas, and C. J. Subich, "The wave structure function in weak to strong fluctuations: an analytic model based on heuristic theory," Waves Random Media 14, 75-96 (2004). [CrossRef]
  22. R. L. Fante, "Turbulence-induced distortion of synthetic aperture radar images," IEEE Trans. Geosci. Remote Sens. 32, 958-961 (1994). [CrossRef]
  23. R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence (Springer-Verlag, 1994).
  24. R. Conan, A. Ziad, J. Borgnino, F. Martin, and A. Tokovinin, "Measurements of the wavefront outer scale at Paranal: influence of this parameter in interferometry," Proc. SPIE 4006, 963-973 (2000). [CrossRef]
  25. R. J. Sasiela, MIT Lincoln Laboratory, Cambridge, Mass. (personal communication, 15 June 2005).
  26. V. P. Lukin, "Optical measurements of the outer scale of the atmospheric turbulence," Proc. SPIE 1968, 327-336 (1993).
  27. R. G. Lane, A. Glindemann, and J. C. Dainty, "Simulation of a Kolmogorov phase screen," Waves Random Media 2, 209-224 (1992). [CrossRef]
  28. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1980).
  29. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited