OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 6 — Feb. 20, 2007
  • pp: 872–880

Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance

Donghyun Kim and Soon Joon Yoon  »View Author Affiliations

Applied Optics, Vol. 46, Issue 6, pp. 872-880 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore a nanowire-based localized surface plasmon resonance (LSPR) sensor system using an effective medium for the nanowire layer. The effective medium is obtained based on the far-field characteristics of the nanowire-based LSPR system. Near-field properties as well as the sensitivity performance of the effective medium-based SPR structure are compared to exact results of the nanowire-based LSPR system. The results indicate that an effective medium can reproduce the far-field and near-field characteristics of nanowires fairly well, while it represents the nanowire-based LSPR on a limited basis in terms of sensitivity characteristics, particularly when the LSPR is significantly enhanced.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: August 22, 2006
Revised Manuscript: October 19, 2006
Manuscript Accepted: October 21, 2006
Published: February 2, 2007

Donghyun Kim and Soon Joon Yoon, "Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance," Appl. Opt. 46, 872-880 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. B. Liedberg, C. Nylanderm, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983). [CrossRef]
  3. K. Matsubara, S. Kawata, and S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl. Opt. 27, 1160-1163 (1988). [CrossRef] [PubMed]
  4. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  5. M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001). [CrossRef] [PubMed]
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  7. P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996). [CrossRef]
  8. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000). [CrossRef]
  9. T. Okamoto, I. Yamaguchi, and T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25, 372-374 (2000). [CrossRef]
  10. G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001). [CrossRef] [PubMed]
  11. L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999). [CrossRef]
  12. E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001). [CrossRef]
  13. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000). [CrossRef]
  14. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005). [CrossRef] [PubMed]
  15. K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005). [CrossRef] [PubMed]
  16. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  17. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006). [CrossRef]
  18. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  19. Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998). [CrossRef]
  20. D. Dalacu and L. Martinu, "Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films," J. Appl. Phys. 87, 228-235 (2000). [CrossRef]
  21. J. J. Saarinen, E. M. Vartiainen, and K.-E. Peiponen, "Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement," Appl. Phys. Lett. 83, 893-895 (2003). [CrossRef]
  22. S. Moon and D. Kim, "Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals," J. Opt. Soc. Am. A 23, 199-207 (2006). [CrossRef]
  23. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  24. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  25. L. Li and C. W. Haggans, "Convergence of the coupled-wave method for metallic lamellar diffraction gratings," J. Opt. Soc. Am. A 10, 1184-1189 (1993). [CrossRef]
  26. Ph. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  27. G. Granet and B. Guizal, "Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization," J. Opt. Soc. Am. A 13, 1019-1023 (1996). [CrossRef]
  28. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  29. J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London , 203, 385-420 (1904). [CrossRef]
  30. R. J. Gehr, G. L. Fischer, and R. W. Boyd, "Nonlinear-optical response of porous-glass-based composite materials." J. Opt. Soc. Am. B 14, 2310-2314 (1997). [CrossRef]
  31. U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. 4, 999-1014 (1974). [CrossRef]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983) Chap. 12.
  33. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002). [CrossRef]
  34. E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited