OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 6 — Feb. 20, 2007
  • pp: 943–946

Tunable diffraction-limited light at 488 nm by single-pass frequency doubling of a broad area diode laser

Andreas Jechow, Volker Raab, and Ralf Menzel  »View Author Affiliations

Applied Optics, Vol. 46, Issue 6, pp. 943-946 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laser system that is based on second-harmonic generation of a broad area laser diode and provides 23.2 mW of diffraction-limited light with narrow bandwidth is described. It is tunable from 487.4 to 489 nm . The broad area laser diode is frequency stabilized in an external cavity that yields 800 mW of diffraction-limited light. This infrared light is converted into the visible by use of a 1 cm periodically poled MgO:LiNbO 3 bulk crystal with a measured single-pass conversion efficiency of up to 3.6%∕W × cm.

© 2007 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 27, 2006
Revised Manuscript: October 17, 2006
Manuscript Accepted: October 18, 2006
Published: February 2, 2007

Andreas Jechow, Volker Raab, and Ralf Menzel, "Tunable diffraction-limited light at 488 nm by single-pass frequency doubling of a broad area diode laser," Appl. Opt. 46, 943-946 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Vo-Dinh, B. Cullum, and P. Kasili, "Development of a multispectral imaging system for medical applications," J. Phys. D 36, 1663-1668 (2003). [CrossRef]
  2. D. Lenz, A. O. Gerstner, W. Laffers, M. Steinbrecher, F. Bootz, and A. Tárnok, "Six and more color immunophenotyping on the slide by laser scanning cytometry (LSC)," in Manipulation and Analysis of Biomolecules, Cells, and Tissues,Proc. SPIE 4962, 364-374 (2003). [CrossRef]
  3. A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, and A. Skliar, "Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP," Opt. Lett. 22, 1598-1599 (1997). [CrossRef]
  4. J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," in Solid State Lasers XIII: Technology and Devices, R. Scheps and H. J. Hoffman, eds., Proc. SPIE 5332, 143-150 (2004). [CrossRef]
  5. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, "Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate," Opt. Lett. 24, 1293-1295 (1999). [CrossRef]
  6. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, "31%-efficient blue second-harmonic generation in a periodically poled MgOLiNbO3 waveguide by frequency doubling of an AlGaAs laser diode," Opt. Lett. 24, 1590-1592 (1999). [CrossRef]
  7. D. J. L. Birkin, E. U. Rafailov, G. S. Sokolovskii, W. Sibbett, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "3.6 mW blue light by direct frequency doubling of a diode laser using an aperiodically poled lithium niobate crystal," Appl. Phys. Lett. 78, 3172-3174 (2001). [CrossRef]
  8. D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, and A. Englander, "250 mW of coherent blue 460 nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP," Opt. Lett. 27, 1055-1057 (2002). [CrossRef]
  9. E. U. Rafailov, W. Sibbett, A. Mooradian, J. G. McInerney, H. Karlsson, S. Wang, and F. Laurell, "Efficient frequency doubling of a vertical-extended-cavity surface-emitting laser diode by use of a periodically poled KTP crystal," Opt. Lett. 28, 2091-2093 (2003). [CrossRef] [PubMed]
  10. Z. Ye, Q. Lou, J. Dong, Y. Wei, and L. Lin, "Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals," Opt. Lett. 30, 73-74 (2005). [CrossRef] [PubMed]
  11. E. Samsøe, P. M. Petersen, S. Andersson-Engels, and P. E. Andersen, "Second-harmonic generation of 405-nm light using periodically poled KTiOPO4 pumped by external-cavity laser diode with double grating feedback," Appl. Phys. B 80, 861-864 (2005). [CrossRef]
  12. M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, "Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier," Opt. Express 13, 10589-10596 (2005). [CrossRef] [PubMed]
  13. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, "600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal," Opt. Lett. 31, 802-804 (2006). [CrossRef] [PubMed]
  14. V. Raab and R. Menzel, "External resonator design for high-power laser diodes that yields 400 mW of TEMlowbar00 power," Opt. Lett. 27, 167-169 (2002). [CrossRef]
  15. V. Raab, D. Skoczowsky, and R. Menzel, "Tuning high-power laser diodes with as much as 0.38 W of power and M 2 = 1.2 over a range of 32 nm with 3-GHz bandwidth," Opt. Lett. 27, 1995-1997 (2002). [CrossRef]
  16. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focussed Gaussian light beams," J. Appl. Phys. 39, 3597-3637 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited