OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 6 — Feb. 20, 2007
  • pp: 959–977

Particle formation from pulsed laser irradiation of soot aggregates studied with a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope

Hope A. Michelsen, Alexei V. Tivanski, Mary K. Gilles, Laura H. van Poppel, Mark A. Dansson, and Peter R. Buseck  »View Author Affiliations

Applied Optics, Vol. 46, Issue 6, pp. 959-977 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3381 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J / cm 2 at 532   nm and 0.22 J / cm 2 at 1064   nm . Our results indicate that new particle formationproceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) bothprocesses.

© 2007 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(180.5810) Microscopy : Scanning microscopy
(180.7460) Microscopy : X-ray microscopy
(350.3450) Other areas of optics : Laser-induced chemistry
(350.4990) Other areas of optics : Particles

ToC Category:
Laser-Induced Chemistry

Original Manuscript: April 26, 2006
Revised Manuscript: September 27, 2006
Manuscript Accepted: October 17, 2006
Published: February 2, 2007

Hope A. Michelsen, Alexei V. Tivanski, Mary K. Gilles, Laura H. van Poppel, Mark A. Dansson, and Peter R. Buseck, "Particle formation from pulsed laser irradiation of soot aggregates studied with a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope," Appl. Opt. 46, 959-977 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lahaye and G. Prado, "Morphology and internal structure of soot and carbon blacks," in Particulate Carbon: Formation during Combustion, D.C.Siegla and G.W.Smith, eds. (Plenum, 1981), pp. 33-35.
  2. Ü. Ö. Köylü and G. M. Faeth, "Structure and overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992). [CrossRef]
  3. H. X. Chen and R. A. Dobbins, "Crystallogenesis of particles formed in hydrocarbon combustion," Combust. Sci. Technol. 159, 109-128 (2000). [CrossRef]
  4. B. Hu, B. Yang, and Ü. Ö. Köylü, "Soot measurements at the axis of an ethylene/air nonpremixed turbulent jet flame," Combust. Flame 134, 93-106 (2003). [CrossRef]
  5. R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Can soot primary particle size be determined using laser-induced incandescence?," Combust. Flame 116, 291-296 (1999). [CrossRef]
  6. L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, "Electron tomography of nanoparticle clusters and implications for atmospheric lifetimes and radiative forcing of soot," Geophys. Res. Lett. 32, L24811 (2005). [CrossRef]
  7. J. Lahaye and F. Ehrburger-Dolle, "Mechanisms of carbon black formation: correlation with the morphology of aggregates," Carbon 32, 1319-1324 (1994). [CrossRef]
  8. T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, and G. M. Faeth, "Computational evaluation of approximate Rayleigh-Debye-Gans/fractal-aggregate theory for the absorption and scattering properties of soot," J. Heat Transfer 117, 152-159 (1995). [CrossRef]
  9. T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, "Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates," Appl. Opt. 35, 6560-6567 (1996). [CrossRef] [PubMed]
  10. Ü. Ö. Köylü, "Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity," Combust. Flame 109, 488-500 (1996). [CrossRef]
  11. J. C. Ku and K.-H. Shim, "A comparison of solutions for light scattering and absorption by aggregated and arbitrarily-shaped particles," J. Quant. Spectrosc. Radiat. Transfer 47, 201-220 (1992). [CrossRef]
  12. J. C. Ku and K.-H. Shim, "Optical diagnostics and radiative properties of simulated soot aggregates," J. Heat Transfer 113, 953-958 (1991). [CrossRef]
  13. Ü. Ö. Köylü and G. M. Faeth, "Fractal and projected structure properties of soot aggregates," Combust. Flame 100, 621-633 (1995). [CrossRef]
  14. C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).
  15. R. J. Santoro and C. R. Shaddix, "Laser-induced incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 252-286.
  16. J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," in Proceedings of the SAE (SAE, 1993), paper 932650.
  17. J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," in Proceedings of the SAE (SAE, 1994), paper 942044.
  18. R. L. Vander Wal and D. L. Dietrich, "Laser-induced incandescence applied to droplet combustion," Appl. Opt. 34, 1103-1107 (1995). [CrossRef]
  19. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995). [CrossRef] [PubMed]
  20. B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997). [CrossRef] [PubMed]
  21. P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol Sci. 27, 95-104 (1996). [CrossRef]
  22. B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994). [CrossRef]
  23. C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996). [CrossRef]
  24. A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999). [CrossRef]
  25. K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," in Proceedings of the SAE (SAE, 1999), paper 1999-1901-0508.
  26. S. Schraml, S. Will, and A. Leipertz, "Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence," in Proceedings of the SAE (SAE, 1994), paper 1999-1901-0146.
  27. D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000). [CrossRef]
  28. C. Allouis, A. D'Alessio, C. Noviello, and F. Beretta, "Time resolved laser induced incandescence for soot and cenospheres measurements in oil flames," Combust. Sci. Technol. 153, 51-63 (2000). [CrossRef]
  29. T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002). [CrossRef]
  30. R. Starke, B. Kock, and P. Roth, "Nano-particle sizing by laser-induced incandescence (LII) in a shock wave reactor," Shock Waves 12, 351-360 (2003). [CrossRef]
  31. A. Boiarciuc, F. Foucher, and C. Mounaïm-Rousselle, "Soot volume fraction and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence," Appl. Phys. B 83, 413-421 (2006). [CrossRef]
  32. F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, "Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII," Appl. Phys. B 83, 383-395 (2006). [CrossRef]
  33. S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000). [CrossRef]
  34. B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).
  35. C. Allouis, F. Beretta, and A. D'Alessio, "Sizing soot and micronic carbonaceous particle in spray flames base on time resolved LII," Exp. Therm. Fluid Sci. 27, 455-463 (2003). [CrossRef]
  36. T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003). [CrossRef] [PubMed]
  37. V. Beyer and D. A. Greenhalgh, "Laser induced incandescence under high vacuum conditions," Appl. Phys. B 83, 455-467 (2006). [CrossRef]
  38. R. L. Vander Wal and M. Y. Choi, "Pulsed laser heating of soot: morphological changes," Carbon 37, 231-239 (1999). [CrossRef]
  39. R. L. Vander Wal, C. Y. Choi, and K. O. Lee, "The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics," Combust. Flame 102, 200-204 (1995). [CrossRef]
  40. R. L. Vander Wal, T. M. Ticich, and A. B. Stephens, "Optical and microscopy investigations of soot structure alterations by laser-induced incandescence," Appl. Phys. B 67, 115-123 (1998). [CrossRef]
  41. R. L. Vander Wal and K. A. Jensen, "Laser-induced incandescence: excitation intensity," Appl. Opt. 37, 1607-1616 (1998). [CrossRef]
  42. B. F. Kock, Ph.D. dissertation (Universität Duisburg-Essen, 2006).
  43. C. J. Dasch, "Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame," Appl. Opt. 23, 2209-2215 (1984). [CrossRef] [PubMed]
  44. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, "Time-resolved laser-induced incandescence and laser elastic scattering measurements in a propane diffusion flame," Appl. Opt. 40, 2443-2452 (2001). [CrossRef]
  45. G. D. Yoder, P. K. Diwaker, and D. W. Hahn, "Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering," Appl. Opt. 44, 4211-4219 (2005). [CrossRef] [PubMed]
  46. V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005). [CrossRef]
  47. C. J. Damm, D. Lucas, R. F. Sawyer, and C. P. Koshland, "Characterization of diesel particulate matter with excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2767-2774 (2002). [CrossRef]
  48. P.-E. Bengtsson and M. Aldén, "Soot-visualization strategies using laser techniques," Appl. Phys. B 60, 51-59 (1995). [CrossRef]
  49. C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Soot detection using excimer laser fragmentation fluorescence spectroscopy," Proc. Combust. Inst. 29, 2759-2766 (2002). [CrossRef]
  50. J. Walewski, M. Rupinski, H. Bladh, Z. S. Li, P.-E. Bengtsson, and M. Aldén, "Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy," Appl. Phys. B 77, 447-454 (2003). [CrossRef]
  51. C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, and R. F. Sawyer, "Nanoparticle production by UV irradiation of combustion generated soot particles," J. Nanopart. Res. 6, 467-477 (2004). [CrossRef]
  52. F. Kokai and Y. Koga, "Time-of-flight mass spectrometric studies on the plume dynamics of laser ablation of graphite," Nucl. Instrum. Methods Phys. Res. B 121, 387-391 (1997). [CrossRef]
  53. F. Kokai, "Optical emission spectra from laser ablation of graphite at 266 nm and 1064 nm under a magnetic field," Jpn. J. Appl. Phys. 36, 3504-3509 (1997). [CrossRef]
  54. R. W. Dreyfus, R. Kelly, and R. E. Walkup, "Laser-induced fluorescence study of laser sputtering of graphite," Nucl. Instrum. Methods Phys. Res. B 23, 557-561 (1987). [CrossRef]
  55. J. J. Gaumet, A. Wakisaka, Y. Shimizu, and Y. Tamori, "Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength," J. Chem. Soc. Faraday Trans. 89, 1667-1670 (1993). [CrossRef]
  56. D. J. Krajnovich, "Laser sputtering of highly oriented pyrolytic graphite at 248 nm," J. Chem. Phys. 102, 726-743 (1995). [CrossRef]
  57. H. C. Ong and R. P. H. Chang, "Effect of laser intensity on the properties of carbon plumes and deposited films," Phys. Rev. B 55, 13213-13220 (1997). [CrossRef]
  58. Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part 1. Optical emission spectroscopy," J. Appl. Phys. 88, 6861-6867 (2000). [CrossRef]
  59. P. T. Murray and D. T. Peeler, "Dynamics of graphite photoablation: kinetic energy of the precursors to diamond-like carbon," Appl. Surf. Sci. 69, 225-230 (1993). [CrossRef]
  60. M.-A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, "Electron and excited particle densities in a carbon ablation plume," Appl. Surf. Sci. 197-198,257-262 (2002). [CrossRef]
  61. T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, "Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation," Appl. Surf. Sci. 197-198,263-267 (2002). [CrossRef]
  62. F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, "Emission imaging spectroscopic and shadowgraphic studies on the growth dynamics of graphitic carbon particles synthesized by CO2 laser vaporization," J. Phys. Chem. B 103, 8686-8693 (1999). [CrossRef]
  63. T. Moriwaki, M. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, and Y. Achiba, "Dual pathway of carbon cluster formation in the laser vaporization," J. Chem. Phys. 107, 8927-8932 (1997). [CrossRef]
  64. K. Sasaki, T. Wakabayashi, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002). [CrossRef]
  65. K. Shibagaki, T. Kawashima, K. Sasaki, and K. Kadota, "Formation of positive and negative carbon cluster ions in the initial phase of laser ablation in vacuum," Jpn. J. Appl. Phys. 39, 4959-4963 (2000). [CrossRef]
  66. M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002). [CrossRef]
  67. Z. Márton, L. Landstrom, and P. Heszler, "Early stage of the material removal during ArF laser ablation of graphite," Appl. Phys. A 79, 579-585 (2004). [CrossRef]
  68. R. M. Mayo, J. W. Newman, Y. Yamagata, A. Sharma, and J. Narayan, "Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets: Part II. Electrostatic probe measurements," J. Appl. Phys. 88, 6868-6874 (2000). [CrossRef]
  69. H. Kamezaki, K. Tokunaga, S. Fukuda, N. Yoshida, and T. Muroga, "Pulse high heat flux experiment with laser beams on graphite," J. Nucl. Mater. 179, 193-196 (1991). [CrossRef]
  70. K. A. Lincoln and M. A. Covington, "Dynamic sampling of laser-induced vapor plumes by mass spectrometry," Int. J. Mass Spectrom. Ion Phys. 16, 191-208 (1975). [CrossRef]
  71. T. Wakabayashi, T. Momose, and T. Shida, "Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum," J. Chem. Phys. 111, 6260-6263 (1999). [CrossRef]
  72. J. Berkowitz and W. A. Chupka, "Mass spectrometric study of vapor ejected from graphite and other solids by focused laser beams," J. Chem. Phys. 40, 2735-2736 (1964). [CrossRef]
  73. P. Monchicourt, "Onset of carbon cluster formation inferred from light emission in a laser-induced expansion," Phys. Rev. Lett. 66, 1430-1433 (1991). [CrossRef] [PubMed]
  74. K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser ablation carbon plumes," Appl. Surf. Sci. 197-198,197-201 (2002). [CrossRef]
  75. E. A. Rohlfing, "Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source," J. Chem. Phys. 89, 6103-6112 (1988). [CrossRef]
  76. M. Anselment, R. S. Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987). [CrossRef]
  77. E. A. Rohlfing, D. M. Cox, and A. Kaldor, "Production and characterization of supersonic carbon cluster beams," J. Chem. Phys. 81, 3322-3330 (1984). [CrossRef]
  78. M. Jeunehomme and R. P. Schwenker, "Focused laser-beam experiment and the oscillator strength of the Swan system," J. Chem. Phys. 42, 2406-2408 (1965). [CrossRef]
  79. A. M. Keszler and L. Nemes, "Time averaged emission spectra of Nd:YAG laser induced carbon plasmas," J. Mol. Struct. 695-696,211-218 (2004). [CrossRef]
  80. J. A. Howe, "Observations on the maser-induced graphite jet," J. Chem. Phys. 39, 1362-1363 (1963). [CrossRef]
  81. L. Nemes, A. M. Keszler, J. O. Hornkolh, and C. G. Parigger, "Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown," Appl. Opt. 44, 3661-3667 (2005). [CrossRef] [PubMed]
  82. S. S. Harilal, R. C. Isaac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, "Optical emission studies of C2 species in laser-produced plasma from carbon," J. Phys. D 30, 1703-1709 (1997). [CrossRef]
  83. A. O'Keefe, M. M. Ross, and A. P. Baronavski, "Production of large carbon cluster ions by laser vaporization," Chem. Phys. Lett. 130, 17-19 (1986). [CrossRef]
  84. G. F. Lorusso, V. Capozzi, P. Milani, A. Minafra, and D. Lojacono, "UV spectra of graphite microparticles produced by laser vaporization," Solid State Commun. 85, 729-734 (1993). [CrossRef]
  85. F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, and S. Iijima, "Laser vaporization synthesis of polyhedral graphite," Appl. Phys. A 77, 69-71 (2003). [CrossRef]
  86. S. M. Kimbrell and E. S. Yeung, "Real-time particle size measurements in laser-generated plumes by Mie scattering," Appl. Spectrosc. 43, 1248-1251 (1989). [CrossRef]
  87. S. Iijima, T. Wakabayashi, and Y. Achiba, "Structures of carbon soot prepared by laser ablation," J. Phys. Chem. 100, 5839-5843 (1996). [CrossRef]
  88. T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, and Y. Achiba, "Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique," Appl. Phys. A 70, 121-124 (2000). [CrossRef]
  89. E. A. Rohlfing and D. W. Chandler, "Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow," Chem. Phys. Lett. 170, 44-50 (1990). [CrossRef]
  90. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature 318, 162-163 (1985). [CrossRef]
  91. D. M. Cox, K. C. Reichmann, and A. Kaldor, "Carbon clusters revisited: the 'special' behavior of C60 and large carbon clusters," J. Chem. Phys. 88, 1588-1597 (1988). [CrossRef]
  92. M. Pellarin, E. Cottancin, J. Lermé, J. L. Vialle, and M. Broyer, "Coating and polymerization of C60 with carbon: a gas phase photodissociation study," J. Chem. Phys. 117, 3088-3097 (2002). [CrossRef]
  93. S. Suzuki, H. Yamagachi, R. Sen, H. Kataura, W. Krätschmer, and Y. Achiba, "Time and space evolution of carbon species generated with a laser furnace technique," AIP Conf. Proc. 590, 51-54 (2001). [CrossRef]
  94. "Image processing and analysis in Java," http://rsb.info.nih.gov/ij/.
  95. A. L. D. Kilcoyne, T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, A. P. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission x-ray microscopes at the advanced light source," J. Synchrotron Radiat. 10, 125-136 (2003). [CrossRef] [PubMed]
  96. Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, "High-resolution K-shell photoabsorption measurements of simple molecules," Phys. Rev. A 44, 1848-1858 (1991). [CrossRef] [PubMed]
  97. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change (Wiley, 1998).
  98. T. T. Charalampopoulos and H. Chang, "Agglomerate parameters and fractal dimension of soot using light scattering-effects of surface growth," Combust. Flame 87, 89-99 (1991). [CrossRef]
  99. Ü. Ö. Köylü, Y. C. Xing, and D. E. Rosner, "Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images," Langmuir 11, 4848-4854 (1995). [CrossRef]
  100. J.-S. Wu, S. S. Krishnan, and G. M. Faeth, "Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames," J. Heat Transfer 119, 230-237 (1997). [CrossRef]
  101. W. S. Bacsa, W. A. de Heer, D. Ugarte, and A. Châtelain, "Raman spectroscopy of closed-shell carbon particles," Chem. Phys. Lett. 211, 346-352 (1993). [CrossRef]
  102. R. H. Hurt, G. P. Crawford, and H.-S. Shim, "Equilibrium nanostructure of primary soot particles," Proc. Combust. Inst. 28, 2539-2546 (2000). [CrossRef]
  103. R. L. Vander Wal, "A TEM methodology for the study of soot particle structure," Combust. Sci. Technol. 126, 333-357 (1997). [CrossRef]
  104. T. Ishiguro, Y. Takatori, and K. Akihama, "Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell," Combust. Flame 108, 231-234 (1997). [CrossRef]
  105. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, 1996).
  106. J. Robertson, "Amorphous carbon," Adv. Phys. 35, 317-374 (1986). [CrossRef]
  107. R. Gago, I. Jiménez, and J. M. Albella, "Detecting with x-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation," Surf. Sci. 482-485,530-536 (2001). [CrossRef]
  108. R. Gago, M. Vinnichenko, H. U. Jäger, A. Y. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, "Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory," Phys. Rev. B 72, 014120 (2005). [CrossRef]
  109. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fuikawa, "Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection −E = 100-2000 eV, Z = 1-94," At. Data Nucl. Data Tables 27, 1-144 (1982). [CrossRef]
  110. R. A. Rosenberg, P. J. Love, and V. Rehn, "Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite," Phys. Rev. B 33, 4034-4037 (1986). [CrossRef]
  111. C. Lenardi, M. Marino, E. Barborini, P. Piseri, and P. Milani, "Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge x-ray absorption spectroscopy," Eur. Phys. J. B 46, 441-447 (2005). [CrossRef]
  112. R. Ahuja, P. A. Brühwiler, J. M. Wills, B. Johansson, N. Mårtensson, and O. Eriksson, "Theoretical and experimental study of the graphite 1s x-ray absorption edges," Phys. Rev. B 54, 14396-14404 (1996). [CrossRef]
  113. R. F. Willis, B. Fitton, and G. S. Painter, "Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment," Phys. Rev. B 9, 1926-1937 (1974). [CrossRef]
  114. F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett. 69, 568-570 (1996). [CrossRef]
  115. J. Stöhr, NEXAFS Spectroscopy (Springer, 1996).
  116. M. B. Fernandes, J. O. Skjemstad, B. B. Johnson, J. D. Wells, and P. Brooks, "Characterization of carbonaceous combustion residues: I. Morphological, elemental and spectroscopic features," Chemosphere 51, 785-795 (2003). [CrossRef] [PubMed]
  117. M. B. Fernandes and P. Brooks, "Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds," Chemosphere 53, 447-458 (2003). [CrossRef] [PubMed]
  118. G. D. Cody, H. Ade, S. Wirick, G. D. Mitchell, and A. Davis, "Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis," Org. Geochem. 28, 441-455 (1998). [CrossRef]
  119. H. A. Michelsen, "Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles," J. Chem. Phys. 118, 7012-7045 (2003). [CrossRef]
  120. Y. P. Yang, P. Xia, A. L. Junkin, and L. A. Bloomfield, "Direct ejection of clusters from nonmetallic solids during laser vaporization," Phys. Rev. Lett. 66, 1205-1208 (1991). [CrossRef] [PubMed]
  121. H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited