OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 6 — Feb. 20, 2007
  • pp: 993–1000

Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms

Guy Indebetouw, Yoshitaka Tada, Joseph Rosen, and Gary Brooker  »View Author Affiliations

Applied Optics, Vol. 46, Issue 6, pp. 993-1000 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2042 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present what we believe to be a new application of scanning holographic microscopy to superresolution. Spatial resolution exceeding the Rayleigh limit of the objective is obtained by digital coherent addition of the reconstructions of several off-axis Fresnel holograms. Superresolution by holographic superposition and synthetic aperture has a long history, which is briefly reviewed. The method is demonstrated experimentally by combining three off-axis holograms of fluorescent beads showing a transverse resolution gain of nearly a factor of 2.

© 2007 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.0180) Imaging systems : Microscopy
(110.6880) Imaging systems : Three-dimensional image acquisition
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:

Original Manuscript: August 30, 2006
Revised Manuscript: October 13, 2006
Manuscript Accepted: October 16, 2006
Published: February 2, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Guy Indebetouw, Yoshitaka Tada, Joseph Rosen, and Gary Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento , Suppl. 9, 426-438 (1952). [CrossRef]
  2. G. Toraldo di Francia, "Resolving power and information," J. Opt. Soc. Am. 45, 497-501 (1955). [CrossRef]
  3. G. Toraldo di Francia, "Degrees of freedom of an image," J. Opt. Soc. Am. 59, 799-804 (1969). [CrossRef] [PubMed]
  4. W. Lukosz, "Optical systems with resolving power exceeding the classical limits," J. Opt. Soc. Am. 56, 1463-1472 (1966). [CrossRef]
  5. W. Lukosz, "Optical systems with resolving power exceeding the classical limits, II," J. Opt. Soc. Am. 57, 932-941 (1967). [CrossRef]
  6. I. J. Cox and J. R. Sheppard, "Information capacity and resolution in an optical system," J. Opt. Soc. Am. A 3, 1152-1158 (1986). [CrossRef]
  7. D. Mendlovic and A. W. Lohmann, "Space-bandwidth product adaptation and its application to superresolution: fundamentals," J. Opt. Soc. Am. A 4, 558-562 (1997). [CrossRef]
  8. D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, "Space-bandwidth product adaptation and its application to superresolution: examples," J. Opt. Soc. Am. A 4, 563-567 (1997). [CrossRef]
  9. Z. Zalevsky, D. Mendlovics, and A. W. Lohmann, "Optical systems with improved resolving power," in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 40, pp. 271-341. [CrossRef]
  10. T. Leizerson, S. G. Lipson, and V. Sarafi, "Superresolution in far-field imaging," J. Opt. Soc. Am. A 19, 436-443 (2002). [CrossRef]
  11. M. A. Grimm and A. W. Lohmann, "Superresolution image for one-dimensional objects," J. Opt. Soc. Am. 56, 1151-1156 (1966). [CrossRef]
  12. D. Mendlovics, A. W. Lohmann, N. Konforti, I. Kiryuschev, and Z. Zalevsky, "One-dimensional superresolution optical system for temporally restricted objects," Appl. Opt. 36, 2353-2359 (1997). [CrossRef]
  13. A. Shemer, D. Mendlovics, Z. Zalevsky, J. Garcia, and P. Garcia-Martinez, "Superresolving optical system with time multiplexing and computer decoding," Appl. Opt. 38, 7245-7251 (1999). [CrossRef]
  14. A. W. Lohmann and D. P. Paris, "Superresolution for nonbirefringent objects," Appl. Opt. 3, 1037-1043 (1964). [CrossRef]
  15. E. N. Leith, D. Angell, and C. P. Kuei, "Superresolution by incoherent to coherent conversion," J. Opt. Soc. Am. A 4, 1050-1054 (1987). [CrossRef]
  16. R. W. Gerchberg, "Super-resolution through error energy reduction," Opt. Acta 21, 709-720 (1974). [CrossRef]
  17. M. Bertero and C. De Mol, "Superresolution by data inversion," in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 36, pp. 129-178. [CrossRef]
  18. B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005). [CrossRef]
  19. P. C. Sun and E. N. Leith, "Superresolution by spatial-temporal encoding methods," Appl. Opt. 31, 4857-4862 (1992). [CrossRef] [PubMed]
  20. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000). [CrossRef] [PubMed]
  21. M. A. A. Neil, R. Juskaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  22. J. T. Frohn, H. F. Knapp, and A. Stemmer, "Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation," Opt. Lett. 26, 828-830 (2001). [CrossRef]
  23. J. Garcia, Z. Zalevsky, and D. Fixler, "Synthetic aperture superresolution by speckle pattern projection," Opt. Express 13, 6073-6078 (2005). [CrossRef] [PubMed]
  24. O. Haeberle and B. Simon, "Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams," Opt. Commun. 259, 400-408 (2006). [CrossRef]
  25. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, "Three-dimensional superresolution by annular binary filters," Opt. Commun 165, 267-278 (1999). [CrossRef]
  26. M. Gu, T. Tannous, and C. R. J. Sheppard, "Improved axial resolution in focal fluorescence microscopy with annular pupils," Opt. Commun. 110, 533-539 (1994). [CrossRef]
  27. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002). [PubMed]
  28. J. W. Goodman and R. W. Lawrence, "Digital image information from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  29. T. Sato, M. Ueda, and G. Yamagishi, "Superresolution microscope using electrical superposition of holograms," Appl. Opt. 13, 406-408 (1973). [CrossRef]
  30. M. Ueda, T. Sato, and M. Kondo, "Superresolution by multiple superposition of images holograms having different carrier frequencies," Opt. Acta 20, 403-410 (1973). [CrossRef]
  31. X. Chen and S. R. Brueck, "Imaging interferometric lithography approaching the resolution limit of the optics," Opt. Lett. 24, 124-126 (1999). [CrossRef]
  32. F. Le Clerc, M. Gross, and L. Collot, "Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001). [CrossRef]
  33. J. R. Hassig, "Digital off-axis holography with synthetic aperture," Opt. Lett. 27, 2179-2181 (2002). [CrossRef]
  34. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003). [CrossRef] [PubMed]
  35. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, "Single step superresolution by interferometric imaging," Opt. Express 12, 2589-2596 (2004). [CrossRef] [PubMed]
  36. V. Mico, Z. Zalevsky, and J. Garcia, "Superesolution optical system by common path interferometry," Opt. Express 14, 5168-5177 (2006). [CrossRef] [PubMed]
  37. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006). [CrossRef] [PubMed]
  38. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase contrast imaging," Opt. Lett. 24, 291-293 (1999). [CrossRef]
  39. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  40. G. Indebetouw, A. El Maghnouji, and R. Foster, "Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus," J. Opt. Soc. Am. A 22, 892-898 (2005). [CrossRef]
  41. G. Indebetouw and W. Zhong, "Scanning holographic microscopy of three-dimensional fluorescent specimens," J. Opt. Soc. Am. A 23, 1699-1707 (2006). [CrossRef]
  42. G. Indebetouw, Y. Tada, and L. Leacock, "Quantitative phase imaging with scanning holographic microscopy:experimental assessment," Biomed. Eng. Online 5, doi: 10.1186/1475-925x-5-63 (2006).
  43. G. Indebetouw, W. Zhong, and D. Chamberlin-Long, "Point-spread function synthesis in scanning holographic microscopy," J. Opt. Soc. Am. A 23, 1708-1717 (2006). [CrossRef]
  44. G. Indebetouw, "A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy," J. Opt. Soc. Am. A 23, 2657-2661 (2006). [CrossRef]
  45. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000). [CrossRef]
  46. J. Rosen, G. Indebetouw, and G. Brooker, "Homodyne scanning holography," Opt. Express 14, 4280-4285 (2006). [CrossRef]
  47. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  48. I. Yamaguchi, J.-I. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and application to microscopy," Appl. Opt. 40, 6177-6186 (2001). [CrossRef]
  49. J. Swoger, M. Martinez-Corral, J. Huysken, and E. H. K. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002). [CrossRef]
  50. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1966).
  51. C. W. McCutchen, "Generalized aperture and three-dimensional diffraction images," J. Opt. Soc. Am. 54, 240-244 (1964). [CrossRef]
  52. M. Gu, Advance in Optical Imaging Theory (Springer, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited