OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 7 — Mar. 1, 2007
  • pp: 1009–1014

Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector

Kenji Tsujino, Makoto Akiba, and Masahide Sasaki  »View Author Affiliations


Applied Optics, Vol. 46, Issue 7, pp. 1009-1014 (2007)
http://dx.doi.org/10.1364/AO.46.001009


View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low- capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40   ms . We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

© 2007 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon

History
Original Manuscript: May 2, 2006
Revised Manuscript: August 25, 2006
Manuscript Accepted: October 16, 2006
Published: February 12, 2007

Citation
Kenji Tsujino, Makoto Akiba, and Masahide Sasaki, "Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector," Appl. Opt. 46, 1009-1014 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-7-1009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  2. D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64, 012310 (2001). [CrossRef]
  3. S. D. Bartlett and B. C. Sanders, "Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting," Phys. Rev. A 65, 042304 (2002). [CrossRef]
  4. M. Sasaki, K. Wakui, J. Mizuno, M. Fujiwara, and M. Akiba, "EPR beams and photon number detector: toward synthesizing optical nonlinearity," in AIP Conference Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing, S. M. Barnett et al., eds. (AIP, 2004) pp. 44-47. [PubMed]
  5. J. Kim, S. Takeuchi, Y. Yamamoto, and H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999). [CrossRef]
  6. S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999). [CrossRef]
  7. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003). [CrossRef]
  8. E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, "Direct observation of nonclassical photon statistics in parametric down-conversion," Phys. Rev. Lett. 92, 113602 (2004). [CrossRef] [PubMed]
  9. D. Achilles, Ch. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, "Fiber-assisted detection with photon number resolution," Opt. Lett. 28, 2387-2389 (2003). [CrossRef] [PubMed]
  10. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number resolution using time-multiplexed single-photon detectors," Phys. Rev. A 68, 043814 (2003). [CrossRef]
  11. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003). [CrossRef]
  12. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005). [CrossRef]
  13. D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15, 575-578 (2005). [CrossRef]
  14. M. Fujiwara, M. Sasaki, and M. Akiba, "Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature," Appl. Phys. Lett. 80, 1844-1846 (2002). [CrossRef]
  15. M. Fujiwara and M. Sasaki, "Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors," IEEE Trans. Electron Devices 51, 2042-2047 (2004). [CrossRef]
  16. M. Fujiwara and M. Sasaki, "Multiphoton discrimination at telecom wavelength with charge integration photon detector," Appl. Phys. Lett. 86, 111119 (2005). [CrossRef]
  17. M. Fujiwara and M. Sasaki, "Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector," Opt. Lett. 31, 691-693 (2006). [CrossRef] [PubMed]
  18. R. A. La Rue, K. A. Costello, G. A. Davis, J. P. Edgecumbe, and V. W. Aebi, "Photon counting III-V hybrid photomultipliers using transmission mode photocathodes," IEEE Trans. Electron Devices 44, 672-678 (1997). [CrossRef]
  19. R. A. La Rue, G. A. Davis, D. Pudvay, K. A. Costello, and V. W. Aebi, "Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency," IEEE Electron Devices Lett. 20, 126-128 (1999). [CrossRef]
  20. M. Akiba, M. Fujiwara, and M. Sasaki, "Ultrahigh-sensitivity high-linearity photodetection system using a low-gain avalanche photodiode with an ultralow-noise readout circuit," Opt. Lett. 30, 123-125 (2005). [CrossRef] [PubMed]
  21. M. Akiba and M. Fujiwara, "Ultralow-noise near-infrared detection system with a Si p-i-n photodiode," Opt. Lett. 28, 1010-1012 (2003). [CrossRef] [PubMed]
  22. N. E. Israeloff, "Dielectric polarization noise through the glass transition," Phys. Rev. B 53, R11913-R11916 (1996). [CrossRef]
  23. M. Akiba, "1/f dielectric polarization noise in silicon p-n junctions," Appl. Phys. Lett. 71, 3236-3238 (1997). [CrossRef]
  24. R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron Devices ED-19, 703-713 (1972). [CrossRef]
  25. D. N. B. Hall, R. S. Aikens, R. Joyce, and T. W. McCurnin, "Johnson noise limited operation of photovoltaic InSb detectors," Appl. Opt. 14, 450-453 (1975). [CrossRef] [PubMed]
  26. H. Murakami, M. Akiba, T. Matsumoto, and M. Noda, "Low-noise infrared detection system with InSb photodiode for infrared astronomy," Jpn. J. Appl. Phys. Part 1 27, L1973-L1975 (1998). [CrossRef]
  27. When the avalanche process comes into play in a Si APD, the probability distribution usually deviates from a Gaussian shape, having a tail in the higher voltage side. Then standard deviation σ also includes the avalanche noise, and photon number discrimination based on the CIPD becomes impossible.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited