OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 7 — Mar. 1, 2007
  • pp: 1132–1138

Aircraft and balloon in situ measurements of methane and hydrochloric acid using interband cascade lasers

Lance E. Christensen, Christopher R. Webster, and Rui Q. Yang  »View Author Affiliations

Applied Optics, Vol. 46, Issue 7, pp. 1132-1138 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aircraft and balloon in situ measurements of CH 4 and HCl using cw distributed feedback (DFB) interband cascade (IC) lasers arereported. In the stratosphere and upper troposphere, sensitivity toward CH 4 and HCl is better than 10   ppbv (1 s) and 90   pptv (50 s), respectively. These are the first flight measurements of trace gas-phase species using cw DFB IC lasers.

© 2007 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.5960) Lasers and laser optics : Semiconductor lasers

Original Manuscript: March 21, 2006
Revised Manuscript: October 27, 2006
Manuscript Accepted: November 1, 2006
Published: February 12, 2007

Lance E. Christensen, Christopher R. Webster, and Rui Q. Yang, "Aircraft and balloon in situ measurements of methane and hydrochloric acid using interband cascade lasers," Appl. Opt. 46, 1132-1138 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, and M. Giuranna, "Detection of methane in the atmosphere of Mars," Science 306, 1758-1761 (2004). [CrossRef] [PubMed]
  2. C. R. Webster, "Measuring methane and its isotopes 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy," Appl. Opt. 44, 1226-1235 (2005). [CrossRef] [PubMed]
  3. R. T. Menzies, C. R. Webster, and E. D. Hinkley, "Balloon-borne diode-laser absorption spectrometer for measurements of stratospheric trace species," Appl. Opt. 22, 2655-2664 (1983). [CrossRef] [PubMed]
  4. D. R. Hastie and M. D. Miller, "A balloon borne tunable diode-laser absorption spectrometer for multispecies trace gas measurements," Proc. SPIE 438, 145-150 (1983).
  5. Z. Feit, M. McDonald, R. J. Woods, V. Archambault, and P. Mak, "Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers," Appl. Phys. Lett. 68, 738-740 (1996). [CrossRef]
  6. K. Narasaki, S. Tsunematsu, K. Kanao, H. Murakami, T. Nakagawa, K. Mitsuda, J. Inatani, H. Sugita, and M. Murakami, "Mechanical coolers operating below 4.5 K for space application," Nucl. Instrum. Methods Phys. Res. A 559, 644-647 (2006). [CrossRef]
  7. P. Werle, K. Maurer, R. Kormann, R. Mucke, F. D'Amato, T. Lancia, and A. Popov, "Spectroscopic gas analyzers based on indium-phosphide, antimonide, and lead-salt diode lasers," Spectrochim. Acta Part A 58, 2361-2372 (2002). [CrossRef]
  8. C. Lin, M. Grau, O. Dier, and M.-C. Amann, "Low threshold room-temperature continuous-wave operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004). [CrossRef]
  9. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Mechior, "Continuous wave operation of a mid-infrared semiconductor laser at room temperature," Science 295, 301-305 (2002). [CrossRef] [PubMed]
  10. J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, "Temperature dependent characteristics of lambda ∼ 3.8 μm room-temperature continuous-wave quantum-cascade lasers," Appl. Phys. Lett. 88, 251118 (2006). [CrossRef]
  11. D. Bour, M. Troccoli, F. Capasso, S. Corzine, A. Tandon, D. Mars, and G. Hofler, "Metalorganic vapor-phase epitaxy of room-temperature, low-threshold InGaAs/AlInAs quantum cascade lasers," J. Cryst. Growth 272, 526-530 (2004). [CrossRef]
  12. D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source," Appl. Phys. B 82, 479-486 (2006). [CrossRef]
  13. R. Q. Yang, "Infrared laser based on intersubband transitions in quantum wells," Superlattices Microstruct. 17, 77-83 (1995). [CrossRef]
  14. R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold mid-infrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005). [CrossRef]
  15. C. J. Hill, C. M. Wong, B. Yang, and R. Q. Yang, "Type-II interband cascade lasers emitting at wavelengths beyond 5.1 μm," Electron. Lett. 40, 878-879 (2004). [CrossRef]
  16. R. Q. Yang, C. J. Hill, and Y. Qiu, "Mid-IR interband cascade lasers," Mater. Res. Soc. Symp. Proc. 891, 0891-EE0801-0806 (2006).
  17. R. Q. Yang, C. J. Hill, B. Yang, C. M. Wong, R. E. Muller, and P. M. Echternach, "Continuous-operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004). [CrossRef]
  18. M. Horstjann, Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. M. Wong, C. J. Hill, and R. Q. Yang, "Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 79, 799-803 (2004). [CrossRef]
  19. K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 1034-1035 (2006). [CrossRef]
  20. R. Q. Yang, C. J. Hill, K. Mansour, Y. Qiu, A. Soibel, J.-F. Muller, and P. Echternach, "Distributed feedback mid-infrared interband cascade lasers at thermoelectric cooler temperatures" (submitted to IEEE J. Sel. Top. Quantum Electron.).
  21. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996). [CrossRef]
  22. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "High-power/low-threshold type-II interband cascade mid-IR laser-design and modeling," IEEE Photon. Technol. Lett. 9, 170-172 (1997). [CrossRef]
  23. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, and J. Kendall. "Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3," Appl. Opt. 33, 454-472 (1994). [CrossRef] [PubMed]
  24. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, "Airborne laser infrared absorption spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely piloted aircraft platforms," Appl. Opt. 38, 4609-4622 (1999). [CrossRef]
  25. C. R. Webster, R. D. May, R. Toumi, and J. Pyle, "Active nitrogen partitioning and the nightime formation of N2O5 in the stratosphere: measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS diode laser spectrometer," J. Geophys. Res., [Atmos.] 95, 13851-13866 (1990). [CrossRef]
  26. R. D. May, "Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O," J. Geophys. Res., [Atmos.] 103, 19161-19172 (1998). [CrossRef]
  27. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchingson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001). [CrossRef]
  28. D. R. Herriott, H. Kogelnik, and R. Kompsner, "A scanning spherical mirror interferometer for spectral analysis of laser radiation," Appl. Opt. 3, 1471-1484 (1964). [CrossRef]
  29. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartman, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  30. J. Reid and D. Labrie, "Second-harmonic detection with tunable diode lasers--comparison of experiment and theory," Appl. Phys. B 26, 203-210 (1981). [CrossRef]
  31. R. D. May and C. R. Webster, "Data processing and calibration for tunable diode laser harmonic absorption spectrometers," J. Quant. Spectrosc. Radiat. Transfer 49, 335-347 (1993). [CrossRef]
  32. M. H. Proffitt and R. J. McLaughlin, "Fast response dual-beam UV absorption ozone photometer suitable for use on stratospheric balloons," Rev. Sci. Instrum. 54, 1719-1728 (1983). [CrossRef]
  33. R. J. Salawitch, J. J. Margitan, B. Sen, G. C. Toon, M. Rex, G. B. Osterman, J. W. Elkins, E. A. Ray, F. L. Moore, E. Richard, P. Romashkin, D. Hurst, and W. Brune, "Chemical loss of ozone during the Arctic winter of 1999-2000: an analysis based on balloon-borne observations," J. Geophys. Res., [Atmos.] 107, 8269-8288 (2002). [CrossRef]
  34. G. C. Toon, "The JPL MkIV Interferometer," Opt. Photon. News 2, 19-21 (1991). [CrossRef]
  35. A. Barbe, P. Marche, C. Secroun, and P. Jouve, "Measurements of tropospheric and stratospheric H2CO by an infrared high-resolution technique," Geophys. Res. Lett. 6, 463-465 (1979). [CrossRef]
  36. L. Froidevaux, N. J. Livesey, W. G. Read, Y. B. Jiang, C. C. Jimenez, M. J. Filipiak, M. J. Schwartz, M. L. Santee, H. C. Pumphrey, J. H. Jiang, D. L. Wu, G. L. Manney, B. J. Drouin, J. W. Waters, E. J. Fetzer, P. F. Bernath, C. D. Boone, K. A. Walker, K. W. Jucks, G. C. Toon, J. J. Margitan, B. Sen, C. R. Webster, L. E. Christensen, J. W. Elkins, E. Atlas, R. A. Lueb, and R. Hendershot, "Early validation analyses of atmospheric profiles from EOS MLS on the aura satellite," IEEE Trans. Geosci. Remote Sens. 44, 1106-1121 (2006). [CrossRef]
  37. M. Loewenstein, H. Jost, J. Grose, J. Eilers, D. Lynch, S. Jensen, and J. Marmie, "Argus: a new instrument for the measurement of the stratospheric dynamical tracers, N2O and CH4," Spectrochim. Acta Part A 58, 2329-2345 (2002). [CrossRef]
  38. E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLaughlin, A. L. Schmeltekopf, and A. F. Tuck, "A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4 in the upper troposphere and lower stratosphere," Appl. Phys. B 75, 183-194 (2002). [CrossRef]
  39. M. Pantani, F. Castagnoli, F. D'Amato, M. De Rosa, P. Mazzinghi, and P. Werle, "Two infrared laser spectrometers for the in situ measurement of stratospheric gas concentration," Infrared Phys. Technol. 46, 109-113 (2004). [CrossRef]
  40. G. Durry, T. Danguy, and I. Pouchet, "Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication diodes," Appl. Opt. 41, 424-433 (2002). [CrossRef] [PubMed]
  41. P. Bergamaschi, M. Schupp, and G. W. Harris, "High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH3 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer," Appl. Opt. 33, 7704-7716 (1994). [CrossRef] [PubMed]
  42. J. B. McManus, M. S. Zahniser, D. D. Nelson, L. R. Williams, and C. E. Kolb, "Infrared laser spectrometer with balanced absorption for measurement of isotopic ratios of carbon gases," Spectrochim. Acta Part A 58, 2465-2479 (2002). [CrossRef]
  43. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchingson, and A. Y. Cho, "Methane concentration and isotopic compostion measurements with a mid-infrared quantum-cascade laser," Opt. Lett. 24, 1762-1764 (1999). [CrossRef]
  44. K. Tsuji, S. Fujikawa, K. Yamada, N. Yoshida, K. Yamamoto, and T. Kikugawa, "Precise measurement of the 13CH4/12CH4 ratio of diluted methane using a near-infrared laser absorption spectrometer," Sens. Actuators B 114, 326-333 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited