OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 9 — Mar. 20, 2007
  • pp: 1379–1384

Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer

S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J. P. Chamonal, and G. Destefanis  »View Author Affiliations


Applied Optics, Vol. 46, Issue 9, pp. 1379-1384 (2007)
http://dx.doi.org/10.1364/AO.46.001379


View Full Text Article

Enhanced HTML    Acrobat PDF (936 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what is believed to be a novel experimental method to measure the technological parameters (spectral response and quantum yield) of an infrared focal plane array. This method makes original use of a Fourier transform spectrometer, which allows us to simultaneously extract the spectral performances of all pixels from one single set of measurements. The methodology used and the principle of the experimental setup are detailed. A Fourier analysis is shown to provide various optogeometrical information on the detector microstructure. A demonstrator based on the HgCdTe technology was designed, and satisfactory experimental results were obtained.

© 2007 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

History
Original Manuscript: September 1, 2006
Manuscript Accepted: November 2, 2006
Published: March 1, 2007

Citation
S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J. P. Chamonal, and G. Destefanis, "Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer," Appl. Opt. 46, 1379-1384 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-9-1379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004). [CrossRef]
  2. G. Destefanis, "New generations of infrared detectors based on HgCdTe," C. R. Phys. 4, 1109-1120 (2003). [CrossRef]
  3. S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004). [CrossRef]
  4. N. Guérineau, J. Deschamps, and S. Rommeluère, "Stationary Fourier transform spectrometer," U.S. patent application publication, US 2004/0239939 (2 December 2004).
  5. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  6. P. R. Griffiths and J. A. de Haselth, Fourier Transform Spectrometer Adapted to Low Light Level and High-Speed Operation (Wiley, 1986).
  7. N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003). [CrossRef]
  8. Y. Pochi, Optical Waves in Layered Media (Wiley, 1988).
  9. J. Y. Anderson and L. Lundqvist, "Grating-coupled quantum well infrared detectors: Theory and performances," J. Appl. Phys. 71, 3600-3610 (1992). [CrossRef]
  10. A. Rogalski, "Heterostructure infrared photovoltaic detectors," Infrared Phys. Technol. 41, 213-238 (2000). [CrossRef]
  11. J. L. Tissot, "Advanced IR detector technology development at CEA/LETI," Infrared Phys. Technol. 43, 223-228 (2003). [CrossRef]
  12. A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron. 27, 59-210 (2003). [CrossRef]
  13. M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000). [PubMed]
  14. G. J. Hawkins, "Spectral characterisation of infrared optical materials and filters," Ph.D. dissertation (University of Reading, Department of Cybernetics, 1999).
  15. K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005). [CrossRef]
  16. A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003). [CrossRef]
  17. I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited