OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 9 — Mar. 20, 2007
  • pp: 1411–1415

Wavefront error measurement of high-numerical-aperture optics with a Shack–Hartmann sensor and a point source

Jin-Seok Lee, Ho-Soon Yang, and Jae-Won Hahn  »View Author Affiliations

Applied Optics, Vol. 46, Issue 9, pp. 1411-1415 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a new, to the best of our knowledge, test method to measure the wavefront error of the high-NA optics that is used to read the information on the high-capacity optical data storage devices. The main components are a pinhole point source and a Shack–Hartmann sensor. A pinhole generates the high-NA reference spherical wave, and a Shack–Hartmann sensor constructs the wavefront error of the target optics. Due to simplicity of the setup, it is easy to use several different wavelengths without significant changes of the optical elements in the test setup. To reduce the systematic errors in the system, a simple calibration method was developed. In this manner, we could measure the wavefront error of the NA 0.9 objective with the repeatability of 0.003λ rms ( λ = 632.8 n m ) and the accuracy of 0.01λ rms.

© 2007 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(220.4840) Optical design and fabrication : Testing

Original Manuscript: August 11, 2006
Revised Manuscript: October 25, 2006
Manuscript Accepted: October 26, 2006
Published: March 1, 2007

Jin-Seok Lee, Ho-Soon Yang, and Jae-Won Hahn, "Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source," Appl. Opt. 46, 1411-1415 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, Y. Akiyama, T. Shimouma, and M. Yamamoto, "High-density near-field optical disc recording using phase change media and polycarbonate substrate," in Optical Data Storage 2004, B. V. K. Kumar and H. Kobori, eds., Proc. SPIE 5380, 224-232 (2004). [CrossRef]
  2. R. N. Smartt and W. H. Steel, "Theory and application of point-diffraction interferometers," Jpn. J. Appl. Phys. 14, 351-356 (1975).
  3. Y. Sekine, A. Suzuki, M. Hasegawa, C. Ouchi, S. Hara, T. Hasegawa, Y. Kuramoto, and S. Kato, "Wavefront errors of reference spherical waves in high-numerical aperture point diffraction interferometers," J. Vac. Sci. Technol. B 22, 104-108 (2004). [CrossRef]
  4. K. A. Goldberg, E. Tejnil, and J. Bokor, "A 3D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry," in Extreme Ultraviolet Lithography, G.D. Kubiac and D.R. Kania, eds., OSA Trends in Optics and Photonics (Optical Society of America, 1996), pp. 133-137.
  5. K. Otaki, K. Ota, I. Nishiyama, T. Yamamoto, Y. Fukuda, and S. Okazaki, "Development of the point diffraction interferometer for extreme ultraviolet lithography: design, fabrication, and evaluation," J. Vac. Sci. Technol. B 20, 2449-2458 (2002). [CrossRef]
  6. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, "Phase-shifting point diffraction interferometer," Opt. Lett. 21, 1526-1528 (1996). [CrossRef] [PubMed]
  7. J. E. Millerd, S. J. Martinek, N. J. Brock, J. B. Hayes, and J. C. Wyant, "Instantaneous phase-shift, point-diffraction interferometer," in Optical Data Storage 2004, B. V. K. Kumar and H. Kobori, eds., Proc. SPIE 5380, 422-429 (2004). [CrossRef]
  8. I. Ghozeil, "Hartmann and other screen tests," in Optical Shop Testing, D. Malacara, eds. (Wiley, 1992), pp. 367-396.
  9. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. V. Atta, B. M. V. Wonterghem, W. T. Whistler, S. E. Winters, and B. W. Woods, "Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications," Appl. Opt. 39, 4540-4546 (2000). [CrossRef]
  10. J. E. Greivenkamp, D. G. Smith, R. O. Gappinger, and G. A. Williby, "Optical testing using Shack-Hartmann wavefront sensors," in Optical Engineering for Sensing and Nanotechnology, K. Iwata, ed., Proc. SPIE 4416, 260-263 (2001).
  11. J. Pfund, N. Lindlein, and J. Schwider, "Nonnull testing of rotationally symmetric aspheres: a systematic error assessment," Appl. Opt. 40, 439-446 (2001). [CrossRef]
  12. H.-S. Yang, Y.-W. Lee, J.-B. Song, and I.-W. Lee, "Null Hartmann test for the fabrication of large aspheric surfaces," Opt. Express 13, 1839-1847 (2005). [CrossRef] [PubMed]
  13. H.-S. Yang, J.-B. Song, I.-W. Lee, and Y.-W. Lee, "Testing of steep convex aspheric surface with a Hartmann sensor by using a CGH," Opt. Express 14, 3247-3254 (2006). [CrossRef] [PubMed]
  14. T. M. Jeong, M. Menon, and G. Yoon, "Measurement of wavefront aberration in soft contact lenses by use of a Shack-Hartmann wavefront sensor," Appl. Opt. 44, 4523-4527 (2005). [CrossRef] [PubMed]
  15. W. H. Southwell, "Wavefront estimation fromm wavefront slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980). [CrossRef]
  16. M. Born and E. Wolf, "The diffraction theory of aberrations," in Principles of Optics (Pergamon, 1989), pp. 459-490.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited