OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 9 — Mar. 20, 2007
  • pp: 1429–1434

Modeling of evanescent coupling between two parallel optical nanowires

Keji Huang, Shuangyang Yang, and Limin Tong  »View Author Affiliations

Applied Optics, Vol. 46, Issue 9, pp. 1429-1434 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Evanescent coupling between two parallel nanowires is investigated using the finite-difference time-domain method. Silica, tellurite, and silicon nanowires are used as typical materials in the simulation. Compared with weakly coupled waveguides, strongly coupled nanowires show much smaller transfer lengths without sacrificing high coupling efficiencies, suggesting possibilities for developing highly compact evanescent-coupling-based nanowire photonic devices, as well as for achieving high-efficiency interconnection between nanowires and external optical systems. Meanwhile, the polarization-dependent coupling properties, the considerably high minimum coupling efficiency, and the supermode-cutoff-like behavior are also observed. Evanescent coupling properties of strongly coupled nanowires demonstrated may provide valuable references for practical applications of optical nanowires.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides

Original Manuscript: October 31, 2006
Manuscript Accepted: December 2, 2006
Published: March 1, 2007

Keji Huang, Shuangyang Yang, and Limin Tong, "Modeling of evanescent coupling between two parallel optical nanowires," Appl. Opt. 46, 1429-1434 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Hunsperger, Photonic Devices and Systems (Marcel Dekker, 1994).
  2. J. H. Franz and V. K. Jain, Optical Communications Components and Systems (Narosa Publishing House, 2000).
  3. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  4. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003). [CrossRef] [PubMed]
  5. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004). [CrossRef] [PubMed]
  6. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano. Lett. 4, 1981-1985 (2004). [CrossRef]
  7. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. G. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006). [CrossRef] [PubMed]
  8. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). [CrossRef] [PubMed]
  9. H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots," Small 2, 495-499 (2006). [CrossRef] [PubMed]
  10. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005). [CrossRef] [PubMed]
  11. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9377-9384 (2006). [CrossRef] [PubMed]
  12. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005). [CrossRef]
  13. M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004). [CrossRef] [PubMed]
  14. Y. H. Li, G. Vienne, X. S. Jiang, X. Y. Pan, X. Liu, P. F. Gu, and L. M. Tong, "Modeling rare-earth doped microfiber ring lasers," Opt. Express 14, 7073-7086 (2006). [CrossRef] [PubMed]
  15. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, "Semiconductor nanowire ring resonator laser," Phys. Rev. Lett. 96, 143903 (2006). [CrossRef] [PubMed]
  16. J. Villatoro and D. Monzón-Hemández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005). [CrossRef] [PubMed]
  17. J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005). [CrossRef] [PubMed]
  18. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005). [CrossRef] [PubMed]
  19. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966). [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).
  21. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
  22. T. Izawa and S. Sudo, Optical Fiber: Materials and Fabrication (Kluwer Academic, 1987).
  23. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001). [PubMed]
  24. D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.
  25. L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004). [CrossRef] [PubMed]
  26. L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005). [CrossRef]
  27. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phy. 114, 185-200 (1994). [CrossRef]
  28. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  29. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. Rusell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001). [CrossRef]
  30. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).
  31. F. Bilodeau, K. O. Hill, D. C. Johnson, and S. Faucher, "Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff," Opt. Lett. 12, 634-636 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited