OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 9 — Mar. 20, 2007
  • pp: 1435–1445

Simple technique for the generation of plane surface normal to optic axis direction of uniaxial crystal

Sanjib Chatterjee and Y. Pavan Kumar  »View Author Affiliations


Applied Optics, Vol. 46, Issue 9, pp. 1435-1445 (2007)
http://dx.doi.org/10.1364/AO.46.001435


View Full Text Article

Enhanced HTML    Acrobat PDF (1395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

What we believe to be a new experimental technique for the generation of a plane crystal surface perpendicular to the optic axis direction of a transparent birefringent uniaxial crystal is presented. A simple setup has been described for the initial optic axis alignment of a raw uniaxial crystal blank. Error correction methods have been illustrated. A technique for producing high optical quality surfaces by block polishing plane parallel crystal surfaces normal to the direction of the optic axis, in one setting, is discussed. The block with angular graduations facilitates the correction of angular error. A new conoscopy setup has been coupled to a Fizeau interferometer for high accuracy testing of the optic axis alignment with respect to the surface normal of the relevant polished surface of the uniaxial crystal. The results obtained for a quartz crystal blank are presented.

© 2007 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(220.5450) Optical design and fabrication : Polishing
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

History
Original Manuscript: June 9, 2006
Revised Manuscript: October 10, 2006
Manuscript Accepted: October 17, 2006
Published: March 1, 2007

Citation
Sanjib Chatterjee and Y. Pavan Kumar, "Simple technique for the generation of plane surface normal to optic axis direction of uniaxial crystal," Appl. Opt. 46, 1435-1445 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-9-1435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, "Optics of crystals," in Principles of Optics (Pergamon, 1989), pp. 678-680, 691-694, 698-702.
  2. D. Goldstein, "Polarization optical elements," in Polarized Light (Dekker, 2003), pp. 445-477, 511-532.
  3. S. Chatterjee, "Design considerations and fabrication techniques of Nomarski reflection microscope," Opt. Eng. 42, 2202-2213 (2003). [CrossRef]
  4. R. H. Chu and G. Town, "Birefringent filter synthesis by use of a digital filter design algorithm," Appl. Opt. 41, 3412-3418 (2002). [CrossRef] [PubMed]
  5. J. Mentel, E. Schmidt, and Mavrudis, "Birefringent filters with arbitrary orientations of the optic axis: an analysis of improved accuracy," Appl. Opt. 31, 5022-5029 (1992). [CrossRef] [PubMed]
  6. M. Avendano-Alejo and M. R. Aguilar, "Paraxial theory of birefringent lenses," J. Opt. Soc. Am. A 22, 881-891 (2005). [CrossRef]
  7. J. P. Lesso, A. J. Duncan, W. Sibbett, and M. J. Padgett, "Aberrations introduced by a lens made from a birefringent material," Appl. Opt. 39, 592-598 (2000). [CrossRef]
  8. M. Avendano-Alejo, "Analysis of the refraction of the extraordinary ray in a plane parallel uniaxial plate with an arbitrary orientation of the optical axis," Opt. Express 13, 2549-2555 (2005). [CrossRef] [PubMed]
  9. A. A. Murviand and V. I. Stroganov, "Conditions for bringing the ordinary and extraordinary rays into coincidence in a plane parallel plate fabricated from an optical uniaxial crystal," J. Opt. Technol. 71, 283-285 (2004). [CrossRef]
  10. E. A. West and M. H. Smith, "Polarization errors associated with birefringent waveplates," Opt. Eng. 34, 1574-1580 (1995). [CrossRef]
  11. S. Jen and C. S. Hartmann, "An apparatus for determining the crystal orientation of SAW wafers," in Proceedings of IEEE Ultrasonics Symposium, M. Levy, S.C. Schneide, and B.R. McAvoy, eds. (IEEE, 1994), pp. 397-401.
  12. X. Zhou and X. Xu, "A simple and convenient system for an optical method for crystal orientation," Cryst. Res. Technol. 31, K9-K10 (1996). [CrossRef]
  13. P. Ayras, A. T. Friberg, M. Kaivola, and M. M. Salomaa, "Conoscopic inteferometry of surface-acoustic-wave substrate crystals," Appl. Opt. 38, 5399-5407 (1999). [CrossRef]
  14. B. L. V. Horn and H. H. Winter, "Analysis of the conoscopic measurement for uniaxial liquid crystal tilt angles," Appl. Opt. 40, 2089-2094 (2001). [CrossRef]
  15. K. Ohtsuka, H. Ara, and T. Ogawa, "A new simple arrangement for conoscopic figures," Jpn. J. Appl. Phys. 23, 1541-1542 (1984). [CrossRef]
  16. A. L. Bajor, "Application of imaging conoscope for optical inhomogeneity testing in LiNbO3 crystals and components," in Laser Interferometry VIII Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, and M. Takeda, eds., Proc. SPIE 2860, 350-359 (1996). [CrossRef]
  17. M. J. Guardalben, "Conoscopic alignment methods for birefringent optical elements in fusion lasers," Opt. Photon. News 8, 37-39 (1997).
  18. X. Chen, R Calemezuk, B. Salce, B. Lavorel, C. Akir, and L. Rajaonah, "Long-transient conoscopic pattern techniques," Solid State Commun. 110, 431-434 (1999). [CrossRef]
  19. L. M. Mugnier, "Conoscopic holography toward three-dimensional reconstruction of opaque objects," Appl. Opt. 34, 1363-1371 (1995). [CrossRef] [PubMed]
  20. A. Badano and D. H. Fifadara, "Comparison of conoscopic, telescopic, and goniometric methods for measuring angular emissions from medical liquid crystal displays," Appl. Opt. 43, 4999-5005 (2004). [CrossRef] [PubMed]
  21. M. A. Geday and A. M. Gazer, "A new view of conoscopic illumination of optically active crystals," J. Appl. Crystallogr. 35, 185-190 (2002). [CrossRef]
  22. D. C. Su and C. C. Hsu, "Method for determining the optical axis and (ne, no) of a birefringent crystal," Appl. Opt. 41, 3936-3940 (2002). [CrossRef] [PubMed]
  23. L. Zheng, O. A. Koniplev, and D. D. Mayerhofer, "Determination of the optical-axis orientation of a uniaxial crystal by frequency domain interferometry," Opt. Lett. 22, 931-933 (1997). [CrossRef] [PubMed]
  24. H. Tas, "Orientation determination with polarized light," Metallography 6, 1-8 (1973). [CrossRef]
  25. R. M. A. Azzam, "Determination of the optic axis and optical properties of absorbing uniaxial crystals by reflection perpendicular incidence ellipsometry on wedge samples," Appl. Opt. 19, 3092-3095 (1980). [CrossRef] [PubMed]
  26. K. Kos and A. Z. Siahmakoun, "Orientation of optic axis in wedged photorefractive crystals," Opt. Commun. 129, 217-223 (1996). [CrossRef]
  27. H. J. Schock and C. A. Regan, "Determining optical axes of uniaxial crystals," Appl. Opt. 26, 2682-2689 (1987).
  28. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, "Three-dimensional optic axis determination using variable-incidence-angle polarization optical coherence tomography," Opt. Lett. 31, 2305-2307 (2006). [CrossRef] [PubMed]
  29. B. H. Park, M. C. Pierce, B. Cense, and J. F. D. Boer, "Optical axis determination accuracy for fiber-based polarization sensitive optical coherence tomography," Opt. Lett. 30, 2587-2589 (2005). [CrossRef] [PubMed]
  30. Y. T. Jeng and Y. L. Lo, "Heterodyne polariscope for sequential measurements of the complete optical parameters of a multiple order wave plate," Appl. Opt. 45, 1134-1141 (2006). [CrossRef] [PubMed]
  31. D. Qu, R. Guo, S. Liu, Z. Liu, and Y. Gao, "Simple optical method for determination of crystal orientation in photorefractive crystals," Appl. Opt. 45, 6218-6222 (2006). [CrossRef] [PubMed]
  32. P. S. K. Lee, J. B. Pors, M. P. V. Exter, and J. P. Woerdman, "Simple method for accurate characterization of birefringent crystals," Appl. Opt. 44, 866-870 (2005). [CrossRef] [PubMed]
  33. S. M. Rosin, E. L. Johnson, and N. Mancktelow, "An optical method for the determination of 〈a〉 axis orientationtions in deformed aggregates of quartz," J. Struct. Geol. 26, 2059-2064 (2004). [CrossRef]
  34. C. Jung, B. K. Rhee, and D. Kim, "Simple method for determining the crystalline axes of nonlinear uniaxial crystal with second-harmonic generation," Appl. Opt. 39, 5142-5146 (2000). [CrossRef]
  35. P. Ayras, A. T. Friberg, M. Kaivola, and M. M. Salomaa, "Conoscopic inteferometry of wafers for surface-acoustic wave devices," J. Appl. Phys. 82, 4039-4042 (1997). [CrossRef]
  36. S. Prunet, B. Journet, and G. Fortunato, "Exact calculation of the optical path difference and description of a new birefringent interferometer," Opt. Eng. 38, 983-989 (1999). [CrossRef]
  37. M. Avendano-Alejo and M. R. Auguilar, "Optical path difference in a plane parallel uniaxial plate," J. Opt. Soc. Am. A 23, 926-932 (2006). [CrossRef]
  38. A. Ciattoni, B. Crosignani, and P. D. Porto, "Vectorial theory of propagation in uniaxially anisotropic media," J. Opt. Soc. Am. A 18, 1656-1661 (2001). [CrossRef]
  39. H. H. Karow, Fabrication Methods for Precision Optics (Wiley, 1993), pp. 704-721.
  40. M. V. R. K. Murty, "Newton, Fizeau and Haidinger interferometers," in Optical Shop Testing, D.Malacara, ed. (Wiley, 1992), p. 22.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited