OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 9 — Mar. 20, 2007
  • pp: 1535–1547

Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations

Menghua Wang  »View Author Affiliations


Applied Optics, Vol. 46, Issue 9, pp. 1535-1547 (2007)
http://dx.doi.org/10.1364/AO.46.001535


View Full Text Article

Enhanced HTML    Acrobat PDF (2512 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the remote sensing of the ocean near-surface properties, it is essential to derive accurate water-leaving radiance spectra through the process of the atmospheric correction. The atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses two near-infrared (NIR) bands at 765 and 865   nm (748 and 869   nm for MODIS) for retrieval of aerosol properties with assumption of the black ocean at the NIR wavelengths. Modifications are implemented to account for some of the NIR ocean contributions for the productive but not very turbid waters. For turbid waters in the coastal regions, however, the ocean could have significant contributions in the NIR, leading to significant errors in the satellite-derived ocean water-leaving radiances. For the shortwave infrared (SWIR) wavelengths ( 1000   nm ) , water has significantly larger absorption than those for the NIR bands. Thus the black ocean assumption at the SWIR bands is generally valid for turbid waters. In addition, for future sensors, it is also useful to include the UV bands to better quantify the ocean organic and inorganic materials, as well as for help in atmospheric correction. Simulations are carried out to evaluate the performance of atmospheric correction for nonabsorbing and weakly absorbing aerosols using the NIR bands and various combinations of the SWIR bands for deriving the water-leaving radiances at the UV ( 340   nm ) and visible wavelengths. Simulations show that atmospheric correction using the SWIR bands can generally produce results comparable to atmospheric correction using the NIR bands. In particular, the water-leaving radiance at the UV band ( 340   nm ) can also be derived accurately. The results from a sensitivity study for the required sensor noise equivalent reflectance, ( NE Δ ρ ) , [or the signal-to-noise ratio (SNR)] for the NIR and SWIR bands are provided and discussed.

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

History
Original Manuscript: August 4, 2006
Manuscript Accepted: October 24, 2006
Published: March 1, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Menghua Wang, "Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations," Appl. Opt. 46, 1535-1547 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-9-1535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," Appl. Opt. 33, 443-452 (1994). [CrossRef] [PubMed]
  2. H. R. Gordon, "Atmospheric correction of ocean color imagery in the Earth Observing System era," J. Geophys. Res. 102, 17081-17106 (1997). [CrossRef]
  3. H. R. Gordon, J. W. Brown, and R. H. Evans, "Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner," Appl. Opt. 27, 862-871 (1988). [CrossRef] [PubMed]
  4. H. R. Gordon and M. Wang, "Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component," Appl. Opt. 31, 4247-4260 (1992). [CrossRef] [PubMed]
  5. M. Wang, "The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness," Int. J. Remote Sens. 23, 2693-2702 (2002). [CrossRef]
  6. M. Wang, "A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure," Int. J. Remote Sens. 26, 5651-5663 (2005). [CrossRef]
  7. P. Y. Deschamps, M. Herman, and D. Tanre, "Modeling of the atmospheric effects and its application to the remote sensing of ocean color," Appl. Opt. 22, 3751-3758 (1983). [CrossRef] [PubMed]
  8. H. Yang and H. R. Gordon, "Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance," Appl. Opt. 36, 7887-7897 (1997). [CrossRef]
  9. R. S. Fraser, S. Mattoo, E. N. Yeh, and C. R. McClain, "Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment," J. of Geophys. Res. 102, 17107-17118 (1997). [CrossRef]
  10. M. Wang and S. Bailey, "Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products," Appl. Opt. 40, 4790-4798 (2001). [CrossRef]
  11. R. Frouin, M. Schwindling, and P. Y. Deschamps, "Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications," J. Geophys. Res. 101, 14361-14371 (1996). [CrossRef]
  12. H. R. Gordon and M. Wang, "Influence of oceanic whitecaps on atmospheric correction of ocean-color sensor," Appl. Opt. 33, 7754-7763 (1994). [CrossRef] [PubMed]
  13. K. D. Moore, K. J. Voss, and H. R. Gordon, "Spectral reflectance of whitecaps: their contribution to water-leaving radiance," J. Geophys. Res. 105, 6493-6499 (2000). [CrossRef]
  14. C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Deep-Sea Res. , Part II 51, 5-42 (2004). [CrossRef]
  15. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, "MODIS: advanced facility instrument for studies of the Earth as a system," IEEE Trans. Geosci. Remote Sens. 27, 145-152 (1989). [CrossRef]
  16. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000). [CrossRef]
  17. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, A Partially Coupled Ocean-Atmosphere Model for Retrieval of Water-Leaving Radiance from SeaWiFS in Coastal Waters, NASA Tech. Memo. 2003-206892, S.B. Hooker and E.R. Firestone, eds. (NASA Goddard Space Flight Center, 2003), Vol. 22.
  18. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000). [CrossRef]
  19. M. Wang and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: two case studies," Geophys. Res. Lett. 32, L13606, doi: (2005). [CrossRef]
  20. R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, and R. P. Stumpf, "Coastal optical properties using SeaWiFS," in Ocean Optics XIV (Office of Naval Research, 1998).
  21. R. W. Gould, R. A. Arnone, and P. M. Martinolich, "Spectral dependence of the scattering coefficient in Case-1 and Case-2 waters," Appl. Opt. 38, 2377-2383 (1999). [CrossRef]
  22. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, "Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters," Cont. Shelf Res. 25, 539-555 (2005). [CrossRef]
  23. G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 μm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  24. L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65-2.5 μm spectral range," Appl. Opt. 32, 3531-3540 (1993). [CrossRef] [PubMed]
  25. R. R. Li, Y. J. Kaufman, B. C. Gao, and C. O. Davis, "Remote sensing of suspended sediments and shallow coastal waters," IEEE Trans. Geosci. Remote Sens. 41, 559-566 (2003). [CrossRef]
  26. M. Wang and W. Shi, "Cloud masking for ocean color data processing in the coastal regions," IEEE Trans. Geosci. Remote Sens. 44, 3196-3205 (2006). [CrossRef]
  27. B. C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, "Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space," Appl. Opt. 39, 887-896 (2000). [CrossRef]
  28. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiple quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  29. S. Maritorena, D. A. Siegel, and A. Peterson, "Optimization of a semi-analytical ocean color model for global scale applications," Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  30. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998). [CrossRef]
  31. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, "An overview of MODIS capabilities for ocean science observations," IEEE Trans. Geosci. Remote Sens. 36, 1250-1265 (1998). [CrossRef]
  32. C. S. Roesler, M. J. Perry, and K. L. Carder, "Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters," Limnol. Oceanogr. 34, 1510-1523 (1989). [CrossRef]
  33. A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 28, 43-53 (1981). [CrossRef]
  34. M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, "Modeling the spectral shape of absorption by chromophoric dissolved organic matter," Mar. Chem. 89, 69-88 (2004). [CrossRef]
  35. O. Torres, J. R. Herman, Z. Ahmad, and J. Gleason, "Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis," J. Geophys. Res. 103, 17099-17110 (1998). [CrossRef]
  36. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, Users Guide to LOWTRAN-7 (Air Force Geophysics Laboratory, AFGL-TR-88-0177, 1988).
  37. NOAA, NASA, and USAF, U.S. Standard Atmosphere, 1976 (U.S. Government Printing Office, 1976), p. 227.
  38. S. W. Bailey and P. J. Werdell, "A multisensor approach for the on-orbit validation of ocean color satellite data products," Remote Sens. Environ. 102, 12-23 (2006). [CrossRef]
  39. G. Zibordi, F. Melin, and J.-F. Berthon, "Comparison of SeaWiFS, MODIS, and MERIS radiometric products at a coastal site," Geophys. Res. Lett. 33, L06617, doi: (2006). [CrossRef]
  40. M. Wang, K. D. Knobelspiesse, and C. R. McClain, "Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products," J. Geophys. Res. 110, D10S06, doi: 10.1029/ 2004JD004950 (2005). [CrossRef]
  41. M. Wang, "Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing," Appl. Opt. (to be published). [PubMed]
  42. E. P. Shettle and R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties U.S. Air Force Geophysics Laboratory (AFGL-TR-79-0214, 1979).
  43. K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch, "Maritime aerosol optical properties measured by handheld sun photometers," Remote Sens. Environ. 93, 87-106 (2004). [CrossRef]
  44. M. Schwindling, P. Y. Deschamps, and R. Frouin, "Verification of aerosol models for satellite ocean color remote sensing," J. Geophys. Res. 103, 24919-24935 (1998). [CrossRef]
  45. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-523 (2002). [CrossRef]
  46. M. Wang, "Extrapolation of the aerosol reflectance from the near-infrared to the visible: the single-scattering epsilon vs multiple-scattering epsilon method," Int. J. Remote Sens. 25, 3637-3650 (2004). [CrossRef]
  47. M. Wang and H. R. Gordon, "A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS," Remote Sens. Environ. 50, 231-239 (1994). [CrossRef]
  48. M. D. Chou, P. K. Chan, and M. Wang, "Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties," J. Atmos. Sci. 59, 748-757 (2002). [CrossRef]
  49. M. Wang, S. Bailey, and C. R. McClain, "SeaWiFS provides unique global aerosol optical property data," Eos Trans. Am. Geophys. Union 81, 197 and 202 (2000).
  50. R. H. Evans and H. R. Gordon, "CZCS system calibration: A retrospective examination," J. Geophys. Res. 99, 7293-7307 (1994). [CrossRef]
  51. H. R. Gordon, "In-orbit calibration strategy for ocean color sensors," Remote Sens. Environ. 63, 265-278 (1998). [CrossRef]
  52. J. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, "Calibration of SeaWiFS. II: Vicarious techniques," Appl. Opt. 40, 6701-6718 (2001). [CrossRef]
  53. M. Wang and H. R. Gordon, "Calibration of ocean color scanners: how much error is acceptable in the near-infrared?" Remote Sens. Environ. 82, 497-504 (2002). [CrossRef]
  54. C. Hu, K. L. Carder, and F. E. Muller-Karger, "How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors," Remote Sens. Environ. 76, 239-249 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited