OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 1 — Jan. 1, 2008
  • pp: 30–37

Analysis and fabrication of hybrid metal-dielectric omnidirectional Bragg reflectors

Nakeeran Ponnampalam and Ray G. DeCorby  »View Author Affiliations


Applied Optics, Vol. 47, Issue 1, pp. 30-37 (2008)
http://dx.doi.org/10.1364/AO.47.000030


View Full Text Article

Enhanced HTML    Acrobat PDF (2996 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe chalcogenide glass and polymer based Bragg reflectors with a metallic underlayer and use a transfer matrix model to analyze their performance. The angle-averaged reflectance of a hybrid mirror approaches unity for only a few periods and is much higher than that for a nonmetallized Bragg reflector or for the metallic layer alone. For an angle-averaged reflectance greater than 0.99, the addition of a metallic underlayer enables nearly a tripling of the omnidirectional bandwidth (from 110 to 305   nm ) concurrent with a significant reduction in the number of required periods (from 10.5 to 4.5). Hybrid mirrors of 4.5 periods, with a 50   nm Au underlayer and overall thickness of 2   μm , were fabricated atop silicon substrates and characterized. They exhibit an omnidirectional stop band in the 1450 1750   nm wavelength range, in good agreement with theoretical predictions.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.2750) Materials : Glass and other amorphous materials
(230.4170) Optical devices : Multilayers

ToC Category:
Integrated Optics

History
Original Manuscript: July 19, 2007
Manuscript Accepted: October 15, 2007
Published: December 20, 2007

Citation
Nakeeran Ponnampalam and Ray G. DeCorby, "Analysis and fabrication of hybrid metal-dielectric omnidirectional Bragg reflectors," Appl. Opt. 47, 30-37 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-1-30


Sort:  Year  |  Journal  |  Reset  

References

  1. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  2. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol. 17, 2018-2024 (1999). [CrossRef]
  3. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004). [CrossRef] [PubMed]
  4. B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye, and J. Rivory, "Making an omnidirectional reflector," Appl. Opt. 40, 5056-5063 (2001). [CrossRef]
  5. H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm," Appl. Phys. Lett. 81, 4502-4504 (2002). [CrossRef]
  6. K. M. Chen, A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett. 75, 3805-3807 (1999). [CrossRef]
  7. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector,"Opt. Lett. 26, 1197-1199 (2001). [CrossRef]
  8. W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005). [CrossRef]
  9. R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005). [CrossRef] [PubMed]
  10. T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006). [CrossRef] [PubMed]
  11. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, "Robust and flexible free-standing all-dielectric omnidirectional reflectors," Adv. Mater. 19, 193-196 (2007). [CrossRef]
  12. S.-S. Lo, M.-S. Wang, and C.-C. Chen, " Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004). [CrossRef] [PubMed]
  13. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006). [CrossRef]
  14. G. R. Hadley, J. G. Fleming, and S.-Y. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809-811 (2004). [CrossRef] [PubMed]
  15. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, "Guided self-assembly of integrated hollow Bragg waveguides," Opt. Express 15, 3902-3915 (2007). [CrossRef] [PubMed]
  16. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Modal analysis of Bragg onion resonators," Opt. Lett. 29, 424-426 (2004). [CrossRef] [PubMed]
  17. P. Baumeister, "Dependence of the reflectance of a multilayer reflector on the thickness of the outer layer," Appl. Opt. 38, 6034-6035 (1999). [CrossRef]
  18. F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn. , Part 2: Electron. 29, 9-19 (2006).
  19. Y. Xu, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express 11, 1039-1049 (2003). [CrossRef] [PubMed]
  20. M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997). [CrossRef]
  21. H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004). [CrossRef]
  22. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  23. T. Katagiri, Y. Matsuura, and M. Miyaga, "Metal covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt. 41, 7603-7606 (2002). [CrossRef]
  24. J.-Q. Xi, M. Ojha, W. Cho, T. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electron. Syst. 14, 726-731 (2004). [CrossRef]
  25. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  26. A. Knoesen and L.-M. Wu, "Absorption of polymers for optical waveguide applications measured by photothermal deflection spectroscopy," Proc. SPIE 4461, 146-148 (2001). [CrossRef]
  27. Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, and H. Uyama, "Refractive indices and extinction coefficients of polymers for the mid-infrared region," Appl. Opt. 37, 7091-7095 (1998). [CrossRef]
  28. Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, "Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fibers," J. Polym. Sci., Part B: Polym. Phys. 30, 879-885 (1992). [CrossRef]
  29. "Torlon AI-10 polymer application bulletin" (Solvay Advanced Polymers), www.solvayadvancedpolymers.com/static/wma/pdf/3/2/7/AIlowbar10lowbarAPPlowbarSAP.pdf.
  30. O. Arnon, "Loss mechanisms in dielectric optical interference devices," Appl. Opt. 16, 2147-2151 (1977). [CrossRef] [PubMed]
  31. "AMTIR-1," (Amorphous Materials Inc.), http://www.amorphousmaterials.com/Amtir-1.htm.
  32. D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, "Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides," Appl. Phys. Lett. 91, 011115 (2007). [CrossRef]
  33. D. I. Babic and S. W. Corzine, "Analytic expressions for the reflection delay, penetration depth, and absorption of quarter-wave dielectric mirrors," IEEE J. Quantum Electron. 28, 514-524 (1992). [CrossRef]
  34. A. G. Barriuso, J. J. Manzón, L. L. Sánchez-Soto, and Á. Felipe, "Integral merit function for broadband omnidirectional mirrors," Appl. Opt. 46, 2903-2906 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited