OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1358–1362

Photonic-crystal-based cloaking device at optical wavelengths

Olivier Vanbésien, Nathalie Fabre, Xavier Mélique, and Didier Lippens  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1358-1362 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (6764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a photonic crystal cloaking device at optical wavelengths based on the association of two lattices working in different regimes, namely, stop band and negative refraction. The idea is to reconstruct in phase an incident cut Gaussian modulated plane wave by using the photonic crystal dispersion properties to ensure that no light penetrates in the core of the device. It is believed that such a cloaking device could become a building block for future generations of 3D integrated optical circuits.

© 2008 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(220.2740) Optical design and fabrication : Geometric optical design
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Design and Fabrication

Original Manuscript: December 4, 2007
Revised Manuscript: February 1, 2008
Manuscript Accepted: February 11, 2008
Published: March 21, 2008

Olivier Vanbésien, Nathalie Fabre, Xavier Mélique, and Didier Lippens, "Photonic-crystal-based cloaking device at optical wavelengths," Appl. Opt. 47, 1358-1362 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987) [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987) [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3970 (2000) [CrossRef] [PubMed]
  4. T. Matsumoto, K. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. , 31, 2786-2788(2006) [CrossRef] [PubMed]
  5. M. Perrin, S. Fasquel, T. Decoopman, M. X. Mélique, O. Vanbésien, E. Lheurette, and D. Lippens, “Left-handed electromagnetism obtained via nanostructured metamaterials: comparison with that from microstructured photonic crystals,” J. Opt. A 7, S3-S11 (2005) [CrossRef]
  6. E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. , 30, 2278-2281 (2005) [CrossRef] [PubMed]
  7. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength”, Opt. Lett. 32, 53-55 (2007). [CrossRef]
  8. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41-48 (2007) [CrossRef]
  9. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  10. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006) [CrossRef] [PubMed]
  11. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006) [CrossRef]
  12. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef] [PubMed]
  13. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with non-magnetic metamaterials,” Nat. Photon. 1, 224-227 (2007) [CrossRef]
  14. U. Leonhardt, “Optical conforming mapping,” Science 312, 1777-1780 (2006) [CrossRef] [PubMed]
  15. N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal flat lens,” Opto-Electron. Rev. 14, 225-232 (2006) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited