OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1378–1383

Adaptive helical mirror for generation of optical phase singularity

Devinder Pal Ghai, P. Senthilkumaran, and R. S. Sirohi  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1378-1383 (2008)
http://dx.doi.org/10.1364/AO.47.001378


View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a specially designed adaptive mirror that can be bent into a helical shape for generation of an optical phase singularity. The adaptive helical mirror (AHM) reported here is a reflective device that can provide a continuous phase variation of the optical field in the azimuthal direction. The construction details and evaluation of the AHM are presented. A Michelson interferometer is used for the detection of the phase singularity. The AHM can be used for generation of a singular beam having multiple topological charges, positive or negative, just by controlling the excitation voltage of the AHM.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.3300) Lasers and laser optics : Laser beam shaping
(230.4040) Optical devices : Mirrors

ToC Category:
Optical Devices

History
Original Manuscript: June 11, 2007
Revised Manuscript: September 16, 2007
Manuscript Accepted: January 16, 2008
Published: March 21, 2008

Citation
Devinder Pal Ghai, P. Senthilkumaran, and R. S. Sirohi, "Adaptive helical mirror for generation of optical phase singularity," Appl. Opt. 47, 1378-1383 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1378


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165-190 (1974). [CrossRef]
  2. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995). [CrossRef]
  3. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993). [CrossRef]
  4. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in OpticsE.Wolf, ed. (Elsevier, 1995), Vol. 39, pp. 291-372. [CrossRef]
  5. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  6. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996). [CrossRef]
  7. C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 71034-1038(1990). [CrossRef]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001). [CrossRef] [PubMed]
  9. G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448-5456 (2004). [CrossRef] [PubMed]
  10. J. M. Vaughan and D. V. Willets, “Temporal and interference fringe analysis of TEM01* laser modes,” J. Opt. Soc. Am. 73, 1018-1021 (1983). [CrossRef]
  11. M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993). [CrossRef]
  12. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer generated holograms,” Opt. Lett. 17, 221-223 (1992). [CrossRef] [PubMed]
  13. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994). [CrossRef]
  14. X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006). [CrossRef]
  15. G. A. Swartzlander, Jr., “The optical vortex lens,” Opt. Photon. News 17 (11), 39-43 (2006). [CrossRef]
  16. Ya. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Opt. Lett. 30, 2472-2474 (2005). [CrossRef] [PubMed]
  17. X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007). [CrossRef]
  18. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397-2399 (2004). [CrossRef] [PubMed]
  19. M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004). [CrossRef]
  20. D. Ganic, X. Gan, and M. Gu, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 271351-1353 (2002). [CrossRef]
  21. O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005). [CrossRef]
  22. G. Zhou and F. S. Chau, “Helical wave front laser beam generated with a micro-electro-mechanical systems (MEMS)-based device,” IEEE Photon. Technol. Lett. 18, 292-294(2006). [CrossRef]
  23. N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, and B. Ya Zel'dovich, “Wavefront dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525-528 (1983). [CrossRef]
  24. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, 1999). [CrossRef]
  25. R. K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker., 2000).
  26. R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE. 2121, 68-76 (1994). [CrossRef]
  27. A. Reorda, “Adaptive optics opthalmoscopy,” J. Refract. Surg. 16, 602-607 (2000).
  28. B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186-1190 (1990). [CrossRef]
  29. J. H. Everson, R. E. Aldrich, and V. P. Albertinetti, “Discrete actuator deformable mirror,” Opt. Eng. 20, 316-319 (1981).
  30. M. A. Ealey and J. F. Washeba, “Continuous face sheet low voltage deformable mirrors,” Opt. Eng. 29, 1191-1198 (1990). [CrossRef]
  31. S. G. Lipson and E. Steinhaus, “Bimorph piezo-electric flexible mirror,” J. Opt. Soc. Am. 69, 478-481 (1979). [CrossRef]
  32. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968-2972 (1995). [CrossRef] [PubMed]
  33. T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004). [CrossRef]
  34. J. M. Herbert, Ferroelectric Transducers and Sensors (Gordon & Breach, 1982).
  35. S. Takahashi, “Multilayer piezo-electric ceramic actuators and their applications,” Jpn. J. Appl. Phy. Suppl. 24, 24-2, 41-45(1995).
  36. R. E. Aldrich, “Requirement of piezo-electric materials for deformable mirrors,” Ferroelectrics 27, 19-25 (1980). [CrossRef]
  37. B. Jaffe, W. R. Cook, and H. Jaffe, Piezo-electric Ceramics (Academic, 1971).
  38. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited