OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1410–1416

Numerical and experimental study of microfluidic devices in step-index optical fibers

Jovana Petrovic, Yicheng Lai, and Ian Bennion  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1410-1416 (2008)
http://dx.doi.org/10.1364/AO.47.001410


View Full Text Article

Enhanced HTML    Acrobat PDF (9871 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microfluidic devices composed of microslits in step-index optical fibers are thoroughly investigated. Numerical simulations are performed to explain scattering and power loss in such devices. Experimental results based on microslits fabricated by femtosecond laser processing corroborate theoretical data. Dependency of the device performance on the refractive index of fluid in the slit is further utilized to construct a refractive index sensor and an in-fiber attenuator.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 31, 2007
Revised Manuscript: January 20, 2008
Manuscript Accepted: January 25, 2008
Published: March 24, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jovana Petrovic, Yicheng Lai, and Ian Bennion, "Numerical and experimental study of microfluidic devices in step-index optical fibers," Appl. Opt. 47, 1410-1416 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Dumais, C. L. Callender, J. Noad, and C. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17, 441-443(2005). [CrossRef]
  2. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  3. R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels--its potential for lab-on-a-chip applications,” Lab Chip 6, 1095-1098 (2006). [CrossRef] [PubMed]
  4. A. J. Scott, J. R. Mabesa Jr., D. Gorsich, B. Rathgeb, A. A. Said, M. Dugan, T. F. Haddock, and P. W. Bado, “Optical microsystem for analyzing engine lubricants,” Proc. SPIE 5590, 122-127 (2004). [CrossRef]
  5. L. Malic and A. G. Kirk, “Integrated miniaturized optical detection platform for fluorescence and absorption spectroscopy,” Sens. Actuators A 135, 515-524 (2007). [CrossRef]
  6. P. Russell, “Photonic crystal fibers,” Science 299, 358-362(2003). [CrossRef] [PubMed]
  7. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  8. S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13, 3454-3459 (2005). [CrossRef] [PubMed]
  9. K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt., Pure Appl. Opt. A 7, 13-20 (2005). [CrossRef]
  10. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31, 2559-2561(2006). [CrossRef] [PubMed]
  11. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004). [CrossRef]
  12. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998). [CrossRef]
  13. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784-1794 (2001). [CrossRef]
  14. N. T. Nguyen, A. Saliminia, S. L. Chin, and R. Vallee, “Control of femtosecond laser written waveguides in silica glass,” Appl. Phys. B 85, 145-148 (2006). [CrossRef]
  15. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002). [CrossRef]
  16. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006). [CrossRef]
  17. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006). [CrossRef]
  18. D. M. Karnakis, M. R. H. Knowles, K. T. Alt, M. Schlaf, and H. V. Snelling, “Comparison of glass processing using high-repetition femtosecond (800 nm) and UV (255 nm) nanosecond pulsed lasers,” Proc. SPIE 5718, 216-227 (2005). [CrossRef]
  19. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonics band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690-6695(2007). [CrossRef] [PubMed]
  20. A. Van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15, 8731-8736 (2007). [CrossRef] [PubMed]
  21. R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, “Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures,” Opt. Express 11, 775-781 (2003). [CrossRef] [PubMed]
  22. RSoft Design Group, http://www.rsoftdesign.com.
  23. T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques P, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005). [CrossRef]
  24. J. M. Trudeau, P. Paradis, C. Pare, C. Meneghini, A. Cournoyer, E. Savard, G. Doyon, A-C. Jacob-Poulin, and A. Fougères, “Combined fibre-optic sensor for colour and refractive index (CI) monitoring,” Meas. Sci. Technol. 17, 1134-1139 (2006). [CrossRef]
  25. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  26. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, ”Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609-7614 (2005). [CrossRef] [PubMed]
  27. X. Yang, S. Luo, Z. Chen, and J. H. Ng, “Refractive index sensor based on fiber laser,” Microwave Opt. Technol. Lett. 49, 916-918 (2007). [CrossRef]
  28. M-H. Chiu, S-F. Wang, and R-S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233-235 (2005). [CrossRef] [PubMed]
  29. E. Verpoorte and N. F. De Rooij, “Microfluidics meets MEMS,” Proc. IEEE 91, 930-953 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited