OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1417–1426

Subsurface damage distribution in the lapping process

Zhuo Wang, Yulie Wu, Yifan Dai, and Shengyi Li  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1417-1426 (2008)
http://dx.doi.org/10.1364/AO.47.001417


View Full Text Article

Enhanced HTML    Acrobat PDF (12886 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.

© 2008 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.4610) Optical design and fabrication : Optical fabrication
(350.1820) Other areas of optics : Damage

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 16, 2007
Revised Manuscript: January 29, 2008
Manuscript Accepted: January 30, 2008
Published: March 26, 2008

Citation
Zhuo Wang, Yulie Wu, Yifan Dai, and Shengyi Li, "Subsurface damage distribution in the lapping process," Appl. Opt. 47, 1417-1426 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Lambropoulos, S. Xu, and T. Fang, “Loose abrasive lapping hardness of optical glasses and its interpretation,” Appl. Opt. 36, 1501-1516 (1997).
  2. M. Buijs and K. K. Houten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166, 237-245 (1993). [CrossRef]
  3. J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288-294 (2005). [CrossRef]
  4. K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105-110 (2005).
  5. C. J. Stolz, J. A. Menapace, K. I. Schaffers, C. Bibeau, M. D. Thomas, and A. J. Griffin, “Laser damage initiation and growth of antireflection coated S-FAP crystal surfaces prepared by pitch lap and magnetorheological finishing,” Proc. SPIE 5991, 449-455 (2005).
  6. R. S. Retherford, R. Sabia, and V. P. Sokira, “Effect of surface quality on transmission performance for (111) CaF2,” Appl. Surf. Sci. 183, 264-269 (2001). [CrossRef]
  7. J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84-101 (2004).
  8. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264-272 (2004).
  9. A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96-107 (2002).
  10. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607-2616 (2001). [CrossRef]
  11. X. Sun, D. J. Stephenson, O. Ohnishi, and A. Baldwin, “An investigation into parallel and cross grinding of BK7 glass,” Precis. Eng. 30, 145-153 (2006).
  12. X. Tonnellier, P. Shore, X. Luo, P. Morantz, A. Baldwin, R. Evans, and D. Walker, “Wheel wear and surface subsurface qualities when precision grinding optical materials,” Proc. SPIE 6273, 61-70 (2006).
  13. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277-3280 (1994). [CrossRef]
  14. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241-2249 (2005). [CrossRef]
  15. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601-5617 (2006). [CrossRef]
  16. O. W. Fähnle, T. Wons, E. Koch, S. Debruyne, M. Meeder, S. M. Booij, and J. J. M. Braat, “iTIRM as a tool for qualifying polishing processes,” Appl. Opt. 41, 4036-4038 (2002). [CrossRef]
  17. J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286-1294 (2004).
  18. F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc., London 23, 141-164 (1922).
  19. F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 27, 2529-2538 (1957).
  20. P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: relationship between surface roughness and subsurface damage,” Appl. Opt. 26, 4677-4680 (1987).
  21. J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113-128 (1999).
  22. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 1-25(2005).
  23. N. Belkhir, D. Bouzid, and V. Herold, “Correlation between the surface quality and the abrasive grains wear in optical glass lapping,” Tribol. Int. 40, 498-502 (2007). [CrossRef]
  24. Y. P. Chang, M. Hashimura, and D. A. Dornfeld, “An investigation of material removal mechanisms in lapping with grain size transition,” J. Manuf. Sci. Eng. 122, 413-419 (2000).
  25. M. Buijs and K. K. Houten, “A model for lapping of glass,” J. Mater. Sci. 28, 3014-3020 (1993). [CrossRef]
  26. K. Phillips, G. M. Crimes, and T. R. Wilshaw, “On the mechanism of material removal by free abrasive grinding of glass and fused silica,” Wear 41, 327-350 (1977). [CrossRef]
  27. O. Imanaka, “Lapping mechanics of glass-especially on roughness of lapped surface,” CIRP Ann. 13, 227-233 (1966).
  28. H. T. Young, H. T. Liao, and H. Y. Huang, “Surface integrity of silicon wafers in ultra precision machining,” Int. J. Adv. Manuf. Technol. 29, 372-378 (2006).
  29. O. Desa and S. Bahadur, “Material removal and subsurface damage studies in dry and lubricated single-point scratch tests on alumina and silicon nitride,” Wear 225-229, 1264-1275 (1999). [CrossRef]
  30. V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of Polishing,” J. Appl. Mech. 65, 410-416 (1998). [CrossRef]
  31. R. Chauhan, Y. Ahn, S. Chandrasekar, and T. Farris, “Role of indentation fracture in free abrasive machining of ceramics,” Wear 162-164, 246-257 (1993). [CrossRef]
  32. M. Buijs and L. A. A. G. Martens, “Effect of indentation interaction on cracking,” J. Am. Ceram. Soc. 75, 2809-2814 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited