OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1447–1450

Tunable 6.8 W narrow bandwidth emission from a single-stripe continuous-wave broad-area laser diode in a simple external cavity

Andreas Jechow, Volker Raab, and Ralf Menzel  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1447-1450 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An antireflection-coated broad-area laser diode with an emitter size of 400 μm × 1 μm and a chip length of 1500 μm is operated in a simple external cavity. For wavelength stabilization and to narrow the bandwidth a diffraction grating in a Littrow configuration is used. At an injection current of 9 A up to 6.8 W of optical output power and a resulting slope efficiency of 0.8 W/A could be achieved. Further, the bandwidth could be narrowed to 100 pm (FWHM), and a tuning range of 40 nm around 976 nm was obtained.

© 2008 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 31, 2007
Revised Manuscript: February 26, 2008
Manuscript Accepted: February 27, 2008
Published: March 27, 2008

Andreas Jechow, Volker Raab, and Ralf Menzel, "Tunable 6.8 W narrow bandwidth emission from a single-stripe continuous-wave broad-area laser diode in a simple external cavity," Appl. Opt. 47, 1447-1450 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Earles, L. J. Mawst, and D. Botez, “1.1 W continuous-wave, narrow spectral width (<1 ) emission from broad-stripe, distributed-feedback diode lasers (λ=0.893 μm),” Appl. Phys. Lett. 73, 2072-2074 (1998). [CrossRef]
  2. H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, “High-power 980 nm DFB RW lasers with a narrow vertical far field,” Photon. Technol. Lett. 18, 737-739 (2006). [CrossRef]
  3. A. Klehr, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High power broad-area 808 nm DFB lasers for pumping solid state lasers,” Proc. SPIE 6133, 61330F (2006). [CrossRef]
  4. K. Paschke, J. Behrendt, M. Maiwald, J. Fricke, H. Wenzel, and G. Erbert, “High power, single mode 980 nm DBR tapered diode lasers with integrated 6th order surface gratings based on simplified fabrication process,” Proc. SPIE 6184, 618401(2007). [CrossRef]
  5. R. Bohdan, A. Bercha, O. Mariani, M. Wojdak, F. Dybala, P. Adamiec, W. Trzeciakowski, J. Weber, and M. T. Kelemen, “Tuning of the high-brightness tapered laser and its applications,” Phys. Status Solidi B 244, 213-218 (2007). [CrossRef]
  6. S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346-347 (2006). [CrossRef]
  7. H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10 W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett. 43, 160-161 (2007). [CrossRef]
  8. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Lett. 29, 1891-1893 (2004). [CrossRef] [PubMed]
  9. L. S. Meng, B. Nizamov, P. Madasamy, J. K. Brasseur, T. Henshaw, and D. K. Neumann, “High power 7 GHz bandwidth external-cavity diode laser array and its use in optically pumping singlet delta oxygen,” Opt. Express 14, 10469-10474(2006). [CrossRef] [PubMed]
  10. F. Wang, A. Hermerschmidt, and H. J. Eichler, “High-power narrowed-bandwidth output of a broad-area multi-stripe diode laser with photorefractive phase-conjugated injection,” Opt. Commun. 209, 391-395 (2002). [CrossRef]
  11. F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135-139 (2003). [CrossRef]
  12. M. V. Romalis, “Narrowing of high power diode laser arrays using reflection feedback from an etalon,” Appl. Phys. Lett. 77, 1080-1081 (2000). [CrossRef]
  13. A. Wicht, M. Rudolf, P. Huke, R. H. Rinkleff, and K. Danzmann, “Grating enhanced external cavity diode laser,” Appl. Phys. B 78, 137-144 (2003). [CrossRef]
  14. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736-738 (2006). [CrossRef] [PubMed]
  15. P. D. van Voorst, H. L. Offerhaus, and K.-J. Boller, “Single-frequency operation of a broad-area laser diode by injection locking of a complex spatial mode via a double phase conjugate mirror,” Opt. Lett. 31, 1061-1063 (2006). [CrossRef] [PubMed]
  16. A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun. 277, 161-165 (2007). [CrossRef]
  17. D. Zhao, Q. Lin, and S. Wang, “Symmetrizing transformation of general astigmatic Gaussian beams,” Opt. Quantum Electron. 26, 903-910 (1994).
  18. G. Nemes and A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257-2264 (1994). [CrossRef]
  19. A. Takamizawa, G. Yonozawa, H. Kosaka, and K. Edamatsu, “Littrow-type external-cavity diode laser with a triangular prism for suppression of the lateral shift of output beam,” Rev. Sci. Instrum. 77, 046102 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited