OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1486–1503

Heterodyne detection with a weak local oscillator

Leaf A. Jiang and Jane X. Luu  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1486-1503 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (8273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heterodyne detection in the limit of weak (a few photons) local oscillator and signal power levels has been largely neglected in the past, as authors almost always assumed that the noise was dominated by the shot noise from a strong local oscillator. We present the theory for heterodyne detection of diffuse and specular targets at arbitrary power levels, including the case where the local oscillator power is only a few photons per coherent integration period. The theory was tested with experimental results, and was found to show good agreement. We show how to interpret the power spectral density of the heterodyne signal and how to determine the optimal number of signal and local oscillator photons per coherent integration.

© 2008 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.3640) Atmospheric and oceanic optics : Lidar
(030.5260) Coherence and statistical optics : Photon counting
(040.1240) Detectors : Arrays
(040.2840) Detectors : Heterodyne

ToC Category:

Original Manuscript: August 15, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: January 10, 2008
Published: March 27, 2008

Leaf A. Jiang and Jane X. Luu, "Heterodyne detection with a weak local oscillator," Appl. Opt. 47, 1486-1503 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Jelalian, Laser Radar Systems, (Artech House, 1992), p. 20.
  2. E. Jakeman, C. J. Oliver, and E. R. Pike, “Optical homodyne detection,” Adv. Phys. , 24, 349-405 (1975). [CrossRef]
  3. J. Y. Wang, B. J. Bartholomew, M. L. Streiff, and E. F. Starr, “Imaging CO2 laser radar field tests,” Appl. Opt. 23, 2565-2571 (1984). [CrossRef] [PubMed]
  4. K. P. Chan and D. K. Killinger, “Enhanced detection of atmospheric-turbulence-distorted 1-μm coherent lidar returns using a two-dimensional heterodyne detector array,” Opt. Lett. 16, 1219-1221 (1991). [CrossRef] [PubMed]
  5. X. Favreau, A. Delaval, P. H. Flamant, A. Dabas, and P. Delville, “Four-element receiver for pulsed 10-μm heterodyne Doppler lidar,” Appl. Opt. 39, 2441-2448 (2000). [CrossRef]
  6. R. Dandliker, M. Geiser, C. Giunti, S. Zatti, and G. Margheri, “Improvement of speckle statistics in double-wavelength superheterodyne interferometry,” Appl. Opt. 34, 7197-7201 (1995). [CrossRef] [PubMed]
  7. W. B. Veldkamp, “Holographic local-oscillator beam multiplexing for array heterodyne detection,” Appl. Opt. 22, 891-900 (1983). [CrossRef] [PubMed]
  8. D. P. Hutchinson, M. L. Simpson, C. A. Bennett, R. K. Richards, M. S. Emery, R. I. Crutcher, D. N. Sitter Jr., E. A. Wachter, and M. A. Huston, “Coherent infrared imaging camera (CIRIC),” Proc. SPIE-Int. Soc. Opt. Eng. , 2540, 204-209 (1995).
  9. M. L. Simpson, C. A. Bennett, M. S. Emery, D. P. Hutchinson, G. H. Miller, R. K. Richards, and D. N. Sitter, “Coherent imaging with two-dimensional focal-plane arrays: design and applications,” Appl. Opt. 36, 6913-6920 (1997). [CrossRef]
  10. J. P. Donnelly, K. A. McIntosh, D. C. Oakley, A. Napoleone, S. H. Groves, S. Vernon, L. J. Mahoney, K. Molvar, J. Mahan, J. C. Aversa, E. K. Duerr, Z. L. Liau, B. F. Aull, and D. C. Shaver, “1−μm Geiger-mode detector development,” Proc. SPIE 5791, 281-287 (2005). [CrossRef]
  11. B. Aull, J. Burns, C. Chen, B. Felton, H. Hanson, C. Keast, J. Knecht, A. Loomis, M. Renzi, A. Soares, V. Suntharalingam, K. Warner, D. Wolfson, D. Yost, and D. Young, “Laser radar imager based on 3D integration of Geiger-mode avalanche photodiodes with two SOI timing circuit layers,” Solid-State Circuits, Conference Digest of Technical Papers (IEEE, 2006). [CrossRef]
  12. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128×128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97 ps resolution,” presented at the 2008 IEEE International Solid-State Circuits Conference San Francisco, Calif., 3-7 February 2008. [PubMed]
  13. SensL, DigitalAPD, Photon Counting and Photon Timing Camera.
  14. J. X. Luu and L. A. Jiang, “Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays,” Appl. Opt. 45, 3798-3804 (2006). [CrossRef] [PubMed]
  15. J. H. Shapiro, B. A. Capron, and R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292-3313 (1981). [CrossRef] [PubMed]
  16. R. L. Lucke and L. J. Rickard, “Photon-limited synthetic-aperture imaging for planet surface studies,” Appl. Opt. 41, 5084-5095 (2002). [CrossRef] [PubMed]
  17. P. J. Winzer and W. R. Leeb, “Coherent lidar at low signal powers: basic considerations on optical heterodyning,” J. Mod. Opt. 45, 1549-1555 (1998). [CrossRef]
  18. J. B. Ashcom, S. Kaushik, and R. M. Heinrichs, “Coherent Single-Photon Counting with InGaAsP/InP Avalanche Photodiode Arrays,” presented at the 12th Coherent Laser Radar Conference, Bar Harbor, Maine, 15-20 June 2003.
  19. L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number resolving detector with 10-bits of resolution,” Phys. Rev. A 75, 062325 (2007). [CrossRef]
  20. J. W. Goodman, Statistical Optics (Wiley, 1985), pp. 46, 49, 52, 473, 476, 533, 534, and 536.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited