OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1510–1516

Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography

Seon Young Ryu, Hae Young Choi, Jihoon Na, Woo June Choi, and Byeong Ha Lee  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1510-1516 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (6262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a compact all-fiber sampling probe for an optical coherence tomography (OCT) system. By forming a focusing lens directly on the tip of an optical fiber, a compact sampling probe could be implemented. To simultaneously achieve a sufficiently long working distance and a good lateral reso lution, we employed a large-mode area photonic crystal fiber (PCF) and a coreless silica fiber (CSF) of the same diameters. A working distance of up to 1270 μm , a 3 dB distance range of 2210 μm , and a transverse resolution of 14.2 μm were achieved with the implemented PCF lensed fiber; these values are comparable to those obtainable with a conventional objective lens having an NA of 0.25 ( 10 × ). The performance of the OCT system equipped with the proposed PCF lensed fiber is presented by showing the OCT images of a rat finger as a biological sample and a pearl as an in-depth sample.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 21, 2007
Manuscript Accepted: February 24, 2008
Published: March 28, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Seon Young Ryu, Hae Young Choi, Jihoon Na, Woo June Choi, and Byeong Ha Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1516 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).
  3. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).
  4. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006). [CrossRef] [PubMed]
  5. X. Liu, M. J. Cobb, and Y. Chen, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29, 1763-1765 (2004). [CrossRef] [PubMed]
  6. H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, and Z. Chen, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm,” Opt. Lett. 30, 1171-1173 (2005). [CrossRef] [PubMed]
  7. K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707-709(2003). [CrossRef] [PubMed]
  8. E. S. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13, 1334-1345 (2005). [CrossRef] [PubMed]
  9. K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997). [CrossRef]
  10. J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004). [CrossRef]
  11. H. Yoda and K. Shiraishi, “A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers,” J. Lightwave Technol. 19, 1910-1917 (2001). [CrossRef]
  12. G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31, 894-896 (2006). [CrossRef] [PubMed]
  13. E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169-171 (2006). [CrossRef] [PubMed]
  14. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999). [CrossRef]
  15. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002). [CrossRef] [PubMed]
  16. T. A. Birks, J. C. Knight, and P. St. J.Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  17. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998). [CrossRef]
  18. T. Hirooka, Y. Hori, and M. Nakazawa, “Gaussian and sech approximations of mode field profiles in photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1071-1073 (2004). [CrossRef]
  19. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562-1569 (1965). [CrossRef]
  20. W. M. Emkey and C. A. Jacki, “Analysis and evaluation of graded-index fiber lenses,” J. Lightwave Technol. 5, 1156-1164 (1987). [CrossRef]
  21. M. D. Nielsen, N. A. Mortensen, and J. R. Folkenberg, “Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,” Opt. Lett. 28, 1645-1647 (2003). [CrossRef] [PubMed]
  22. S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited