OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1522–1534

Development of an eye-safe solid-state tunable laser transmitter in the 1.4 1.5 μ m wavelength region based on Cr 4 + : YAG crystal for lidar applications

Anna Petrova-Mayor, Volker Wulfmeyer, and Petter Weibring  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1522-1534 (2008)
http://dx.doi.org/10.1364/AO.47.001522


View Full Text Article

Enhanced HTML    Acrobat PDF (6521 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental optimization of the efficiency of a gain switched tunable Cr 4 + : YAG laser at 10 Hz is described. The thermal lensing during pulsed operation was measured. Optimal performance occurred at a crystal temperature of 34 ° C and resulted in an output energy of 7 mJ and a pulse duration of 35 ns . Tunability in the range of 1350 1500 nm , spectral linewidth of 200 GHz , and M 2 < 4 are demonstrated. The main laser material parameters are estimated. Such a laser could be employed in a laboratory-based nonscanning lidar system if a narrowband birefringent filter is installed. The tunability will permit the improvement of the Cr 4 + : YAG transmitter for water-vapor differential absorption lidar if injection seeding is applied.

© 2008 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 10, 2007
Manuscript Accepted: January 15, 2008
Published: March 28, 2008

Citation
Anna Petrova-Mayor, Volker Wulfmeyer, and Petter Weibring, "Development of an eye-safe solid-state tunable laser transmitter in the 1.4-1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications," Appl. Opt. 47, 1522-1534 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. American National Standard for the Safe Use of Lasers, “Standard for the safe use of lasers,” Tech. Rep. ANSI Z136.1-2000 (American National Standards Institute2000).
  2. M. S. Spuler and S. D. Mayor, “Raman-shifter optimized for lidar at 1.5 μm wavelength,” Appl. Opt. 46, 2990-2995 (2007). [CrossRef] [PubMed]
  3. P. Mamidipudi and D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO atmospheric lidar,” Proc. SPIE, 3707, 327-335 (1999). [CrossRef]
  4. M. S. Webb, P. F. Moulton, J. J. Kasinski, R. I. Burnham, G. Loiacono, and R. Stolzenberger, “High-average-power KTiOAsO4 optical parametric oscillator,” Opt. Lett. 23, 1161-1163 (1998). [CrossRef]
  5. A. V. Smith and D. J. Armstrong, “Nanosecond optical parametric oscillator with 90o image rotation: design and performance,” J. Opt. Soc. Am. B 19, 1801-1814 (2002). [CrossRef]
  6. S. D. Mayor and S. M. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004). [CrossRef] [PubMed]
  7. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998). [CrossRef]
  8. V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304-5320(2001). [CrossRef]
  9. V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001). [CrossRef]
  10. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996). [CrossRef]
  11. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988). [CrossRef]
  12. A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153-157 (2003). [CrossRef]
  13. I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999). [CrossRef]
  14. A. A. Lagatsky, C. T. A. Brown, W. Sibbett, and W. Knox, “Self-starting passively mode-locked femtosecond Cr4+:YAG laser diode pumped by a Yb-fiber,” in Conference on Lasers and Electro-Optics, Vol. 73 of 2002 OSA Technical Digest Series (Optical Society of America, 2002), pp. 339-340.
  15. A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287-352 (2002). [CrossRef]
  16. H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993). [CrossRef]
  17. P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994). [CrossRef]
  18. N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).
  19. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992). [CrossRef]
  20. A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3, 1-13 (1994). [CrossRef]
  21. S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515-562(2001).
  22. S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994). [CrossRef]
  23. A. Petrova-Mayor, V. Wulfmeyer, and P. Weibring, “An eye-safe, tunable lidar transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 23d International Laser Radar Conference (ILRC) (ICLAS, 2006), Vol. 1, pp. 201-204.
  24. S. Kück, K. Peterman, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in OSA Proceedings on Advanced Solid-State Lasers, Vol. 10 (Optical Society of America, 1991), pp. 92-94.
  25. G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, 1989), pp. 66-70.
  26. S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995). [CrossRef]
  27. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999). [CrossRef]
  28. I. T. McKinnie, J. C. Diettrich, R. T. White, and D. M. Warrington, “Dynamics of gain-switched Cr4+:YAG lasers,” Proc. SPIE 3265, 295 (1998). [CrossRef]
  29. A. Petrova, G. Wagner, and V. Wulfmeyer, “Eye-safe LIDAR transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 22nd International Laser Radar Conference (ILRC) (ESA SP-561, 2004), Vol. 1, pp. 199-202.
  30. P. Avizonis and R. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687-693(1966). [CrossRef]
  31. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548-2553 (1970). [CrossRef] [PubMed]
  32. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, 1997).
  33. G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045-8055 (2005). [CrossRef] [PubMed]
  34. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107-117 (1986). [CrossRef] [PubMed]
  35. J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505-514 (1975). [CrossRef]
  36. A. E. Siegman, Lasers (University Science Books, 1986), p. 465.
  37. X. Wang and J. Yao, “Transmitted and tuning characteristics of birefringent filters,” Appl. Opt. 31, 4505-4508 (1992). [CrossRef] [PubMed]
  38. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode pumped Nd:YAG MOPA with high pulse energy, excellent beam quality and frequency stabilized master oscillator as a basis for a next generation lidar system,” Appl. Opt. 44, 582-590 (2005). [CrossRef] [PubMed]
  39. A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited