OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1553–1558

Diffractive optical elements for simultaneous operation in reflection and transmission

Adam J. Caley and Mohammad R. Taghizadeh  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1553-1558 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is advantageous for some diffractive optical element (DOE) applications to produce different output patterns in different circumstances. There has been considerable work on the design of wavelength multiplexing DOEs and in devices where the polarization of the incident light determines the output. One parameter that has not, to our knowledge, been exploited for pattern formation DOEs is the mode of operation, i.e., whether the element works in reflection or transmission. We present an approach for designing such devices and design an element with modeled efficiency, mean square error (MSE), and cross-talk of 65.9, 2.52, and 4.2% in transmission and 66.6, 2.50, and 3.5% in reflection. The element has been successfully fabricated and has measured efficiencies of 58.3 % ± 2 in reflection and 68.8 % ± 5 in transmission are reported.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics

ToC Category:
Diffraction and Gratings

Original Manuscript: October 1, 2007
Revised Manuscript: February 13, 2008
Manuscript Accepted: February 16, 2008
Published: March 31, 2008

Adam J. Caley and Mohammad R. Taghizadeh, "Diffractive optical elements for simultaneous operation in reflection and transmission," Appl. Opt. 47, 1553-1558 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Thomson and M. R. Taghizadeh, “Diffractive elements for high-power fibre coupling applications,” J. Mod. Opt. 50, 1691-1699 (2003).
  2. K. Ballüder and M. R. Taghizadeh, “Regenerative ring-laser design by use of an intracavity diffractive mode-selecting element,” Appl. Opt. 38, 5768-5774 (1999). [CrossRef]
  3. M. R. Taghizadeh and A. J. Waddie, “Micro-optical and optoelectronic components for optical interconnection applications” Acta Phys. Pol. A , 101, 175-188 (2002).
  4. M. W. Farn, M. B. Stern, W. B. Veldkamp, and S. S. Medeiros, “Color separation by use of binary optics,” Opt. Lett. 18, 1214-1216 (1993). [CrossRef] [PubMed]
  5. Y. Ha , H. Hua, and J. P. Rolland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, 97-107 (2003). [CrossRef] [PubMed]
  6. H. Dammann, “Color separation gratings,” Appl. Opt. 17, 2273-2279 (1978). [CrossRef] [PubMed]
  7. J. Bengtsson, “Kinoforms designed to produce different fan-out patterns for two wavelengths,” Appl. Opt. 37, 2011-2020(1998). [CrossRef]
  8. J. R. Sze and M. H. Lu, “Design and fabrication of the diffractive phase element that synthesizes three-color pseudo-nondiffracting beams,” Opt. Eng. 41, 3127-3135 (2002). [CrossRef]
  9. M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000). [CrossRef]
  10. B. Dong, R. Liu, and J. Wang, “Polarized pseudonondiffracting beams generated by polarization-selective diffractive phase elements,” Appl. Opt. 38, 3089-3092 (1999). [CrossRef]
  11. U. D. Zeitner, B. Schnabel, E.-B.Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-strip grating pixels,” Appl. Opt. 38, 2177-2181 (1999). [CrossRef]
  12. B. Grzybowski, D. Qin, and G. Whitesides, “Beam redirection and frequency filtering with transparent elastomeric diffractive elements,” Appl. Opt. 38, 2997-3002 (1999). [CrossRef]
  13. J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991). [CrossRef]
  14. N. Yoshikawa, M. Itoh, and T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483-1485 (1998). [CrossRef]
  15. A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739-1748 (1967). [CrossRef] [PubMed]
  16. L. Lesem, P. Hirsch, and J. Jordan Jr, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150-155, (1969). [CrossRef]
  17. N. Gallagher, “Binary phase digital reflection holograms-fabrication and potential applications,” Appl. Opt. 16, 413-417(1977). [CrossRef] [PubMed]
  18. K. Choi, H. Kim, and B. Lee. “Synthetic phase holograms for auto-stereoscopic image displays using a modified IFTA,” Opt. Express 12, 5229-5236 (2004). [CrossRef] [PubMed]
  19. A. J. Caley, M. J. Thomson, J.-S. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15, 10699-10704 (2007). [CrossRef] [PubMed]
  20. A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for 2 colour far-field pattern formation,” J. Opt. A Pure Appl. Opt. 7, S276(2005). [CrossRef]
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffractive plane pictures,” Optik (Jena) 35, 237-246 (1972).
  22. J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier transform algorithm using both phase and amplitude freedom,” Opt. Commun. 267, 347-355 (2006). [CrossRef]
  23. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  24. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997). [CrossRef]
  25. I. M. Barton, P. Blair, and M. R. Taghizadeh, “Dual-wavelength operation diffractive phase elements for pattern formation,” Opt. Express 1, 54-59 (1998). [CrossRef]
  26. U. D. Zeitner, B. Schnabel, E.-B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-strip grating pixels.” Appl. Opt. 38, 2177-2181 (1999). [CrossRef]
  27. J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519-2525 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited