OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1567–1574

Computer generated holograms from three dimensional meshes using an analytic light transport model

Lukas Ahrenberg, Philip Benzie, Marcus Magnor, and John Watson  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1567-1574 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to analytically compute the light distribution of triangles directly in frequency space. This allows for fast evaluation, shading, and propagation of light from 3D mesh objects using angular spectrum methods. The algorithm complexity is only dependent on the hologram resolution and the polygon count of the 3D model. In contrast to other polygon based computer generated holography methods we do not need to perform a Fourier transform per surface. The theory behind the approach is derived, and a suitable algorithm to compute a digital hologram from a general triangle mesh is presented. We review some first results rendered on a spatial-light-modulator-based display by our proof-of-concept software.

© 2008 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography

ToC Category:

Original Manuscript: August 20, 2007
Revised Manuscript: December 3, 2007
Manuscript Accepted: January 29, 2008
Published: March 31, 2008

Lukas Ahrenberg, Philip Benzie, Marcus Magnor, and John Watson, "Computer generated holograms from three dimensional meshes using an analytic light transport model," Appl. Opt. 47, 1567-1574 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28-34 (1993). [CrossRef]
  2. M. Bove Jr., W. J. Plesniak, T. Quentmeyer, and J. Barabas, Real-time holographic video images with commodity PC hardware in Stereoscopic Displays and Virtual Reality Systems XII, A. J. Woods, M. T. Bolas, J. O. Merritt, and I. E. McDowell, eds., Proc. SPIE 5664, 255-262 (2005).
  3. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer horn-5 for a real-time electroholography,” Opt. Express 13, 1923-1932 (2005). [CrossRef] [PubMed]
  4. T. Haist, M. Reicherter, M. Wu, and L. Seifert, “Using graphics boards to compute holograms,” Comput. in Sci. and Eng. 8, 8-13 (2006); http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1563956. [CrossRef]
  5. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14, 603-608 (2006). [CrossRef] [PubMed]
  6. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14, 7636-7641 (2006). [CrossRef] [PubMed]
  7. D. Leseberg and C. Frère, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27, 3020-3024 (1988); http://www.opticsinfobase.org/viewmedia.cfm?id=61773&seq=0. [CrossRef] [PubMed]
  8. K. Matsushima and A. Kondoh, “Wave optical algorithm for creating digitally synthetic holograms of three-dimensional surface objects,” in Volume 5005 Practical Holography XVII and Holographic Materials IX, T. H. Jeong and S. H. Stevenson, eds. Proc. SPIE 5005, 190-197 (2003).
  9. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607-4614 (2005). [CrossRef] [PubMed]
  10. K. Matsushima, “Performance of the polygon-source method for creating computer-generated holograms of surface objects,” in ICO Topical Meeting on Optoinfomatics/Information Photonics 2006 ICO, (2006), pp. 99-100.
  11. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  12. R. N. Bracewell, K.-Y. Chang, A. K. Jha, and Y.-H. Wang, “Affine theorem for two-dimensional Fourier transform,” Electron. Lett. 29, 304-306 (1993). [CrossRef]
  13. T. Kreis, Handbook of Holographic Interfereometry (Wiley-VCH, 2005), pp. 116, 135.
  14. T. Tommasi and B. Bianco, “Frequency analysis of light diffraction between rotated planes,” Opt. Lett. 17, 556-558 (1992); http://www.opticsinfobase.org/viewmedia.cfm?id=11103&seq=0. [CrossRef] [PubMed]
  15. T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10, 299-305 (1993); http://www.opticsinfobase.org/viewmedia.cfm?id=4534&seq=0. [CrossRef]
  16. R. Ziegler, P. Kaufmann, and M. Gross, “A framework for holographic scene representation and image synthesis,” Tech. Rep. (Swiss Federal Institute of Technology Zurich, 2006).
  17. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755-1762 (2003). [CrossRef]
  18. J. Stam, “Diffraction shaders,” in SIGGRAPH '99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (ACM Addison-Wesley, 1999), pp. 101-110. [CrossRef]
  19. K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” in Practical Holography XIX: Materials and Applications, T. H. Jeong and H. I. Bjelkhagen, Proc. SPIE, 572425-32 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (4051 KB)     
» Media 2: MOV (2904 KB)     
» Media 3: MOV (3807 KB)     
» Media 4: MOV (1380 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited