OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1575–1580

Q ( M ) and the depolarization index scalar metrics

Rafael Espinosa-Luna, Eusebio Bernabeu, and Gelacio Atondo-Rubio  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1575-1580 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A depolarization scalar metric for Mueller matrices, named Q ( M ) , is derived from the degree of polarization. Q ( M ) has been recently reported, and it has been deduced from the nine bilinear constraints between the sixteen elements of the Mueller–Jones matrix. We discuss the relations between Q ( M ) and the depolarization index.

© 2008 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 12, 2007
Revised Manuscript: February 11, 2008
Manuscript Accepted: February 19, 2008
Published: March 31, 2008

Rafael Espinosa-Luna, Eusebio Bernabeu, and Gelacio Atondo-Rubio, "Q(M) and the depolarization index scalar metrics," Appl. Opt. 47, 1575-1580 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” J. Mod. Opt. 32, 259-261 (1985).
  2. J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical system,” J. Mod. Opt. 33, 185-189 (1986).
  3. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305-2319 (1994). [CrossRef]
  4. S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26-36 (1986).
  5. B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization,” Opt. Express 12, 4941-4958 (2004). [CrossRef] [PubMed]
  6. R. Chipman, “Depolarization index and the average degree of polarization,” Appl. Opt. 44, 2490-2495 (2005). [CrossRef] [PubMed]
  7. B. DeBoo, J. M. Sasian, and R. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44, 5434-5445 (2005). [CrossRef] [PubMed]
  8. E. Wolfe and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels,” Appl. Opt. 45, 1688-1703(2006). [CrossRef] [PubMed]
  9. S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11-14 (1998). [CrossRef]
  10. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  11. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1989).
  12. J. J. Gil, “polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1-47 (2007). [CrossRef]
  13. R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256-258 (2007). [CrossRef]
  14. R. A. Chipman, Polarimetry, in Handbook of Optics (McGraw Hill, 1995), Vol. 2.
  15. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Guota, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190-202 (2006). [CrossRef] [PubMed]
  16. A. Aiello, G. Puentes, D. Voight, and J. P. Woerdman, “Maximum likelihood estimation of Mueller matrices,” Opt. Lett. 31, 817-819 (2006). [CrossRef] [PubMed]
  17. S. N. Savenkov, R. S. Muttiah, and Yu A. Oberemok, “Transmitted and reflected scattering matrices from an English oak leaf,” Appl. Opt. 42, 4955-4962 (2003). [CrossRef] [PubMed]
  18. S. N. Savenkov and K. E. Yushtin, “Pecularities of depolarization of linearly polarized radiation by a layer of the anisotropic inhomogeneous medium,” Ukr. J. Phys. 50, 235-239 (2005).
  19. S. N. Savenkov, R. S. Muttiah, K. E. Yushtin, and S. A. Volchkov, “Mueller-matrix model of an inhomogeneous, linear, birefringent medium: single scattering case,” J. Quant. Spectrosc. Radiat. Transfer 106, 475-486 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited