OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1594–1607

Charge-coupled device spectrograph for direct solar irradiance and sky radiance measurements

Natalia Kouremeti, Alkiviadis Bais, Stelios Kazadzis, Mario Blumthaler, and Rainer Schmitt  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1594-1607 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characterization of a charged-coupled device (CCD) spectrograph developed at the Laboratory of Atmospheric Physics, Thessaloniki is presented. The absolute sensitivity of the instrument for direct irradiance and sky radiance measurements was determined, respectively, with an uncertainty of 4.4% and 6.6% in the UV-B, and 3% and 6% in the UV-A, visible and near-infrared (NIR) wavelength ranges. The overall uncertainty associated with the direct irradiance and the sky radiance measurements is, respectively, of the order of 5% and 7% in the UV-B, increasing to 10% for low signals [e.g., at solar zenith angles (SZAs) larger than 70 ° ], and 4% and 6% in the UV-A, visible, and NIR. Direct solar spectral irradiance measurements from an independently calibrated spectroradiometer (Bentham DTM 300) were compared with the corresponding CCD measurements. Their agreement in the wavelength range of 310 500 nm is within 0.5 % ± 1.1 % (for SZA between 20 ° and 70 ° ). Aerosol optical depth (AOD) derived by the two instruments using direct Sun spectra and by a collocated Cimel sunphotometer [Aerosol Robotic network (AERONET)] agree to within 0.02 ± 0.02 in the range of 315 870 nm . Significant correlation coefficients with a maximum of 0.99 in the range of 340 360 nm and a minimum of 0.90 at 870 nm were found between synchronous AOD measurements with the Bentham and the Cimel instruments.

© 2008 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(280.1100) Remote sensing and sensors : Aerosol detection
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 10, 2007
Revised Manuscript: January 18, 2008
Manuscript Accepted: January 18, 2008
Published: March 31, 2008

Natalia Kouremeti, Alkiviadis Bais, Stelios Kazadzis, Mario Blumthaler, and Rainer Schmitt, "Charge-coupled device spectrograph for direct solar irradiance and sky radiance measurements," Appl. Opt. 47, 1594-1607 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Marenco, V. Santacesaria, A. F. Bais, U. Balis, A. diSarra, A. Papayannis, and C. Zerefos, “Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation campaign),” Appl. Opt. 36, 6875-6886 (1997). [CrossRef]
  2. N. A. Krotkov, P. K. Bhartia, J. R. Herman, J. R. Slusser, G. R. R. Scott, G. J. Labow, A. P. P. Vasilkov, T. Eck, O. Doubovik, and B. N. Holben, “Aerosol ultraviolet absorption experiment (2002 to 2004), part 2: absorption optical thickness, refractive index, and single scattering albedo,” Opt. Eng. 44, 1-17 (2005). [CrossRef]
  3. S. Kazadzis, A. Bais, N. Kouremeti, E. Gerasopoulos, K. Garane, M. Blumthaler, B. Schallhart, and A. Cede, “Direct spectral measurements with a Brewer spectroradiometer: absolute calibration and aerosol optical depth retrieval,” Appl. Opt. 44, 1681-1690 (2005). [CrossRef] [PubMed]
  4. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET--A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1-16(1998). [CrossRef]
  5. M. Huber, M. Blumthaler, W. Ambach, and J. Staehelin, “Total atmospheric ozone determined from spectral measurements of direct solar UV irradiance,” Geophys. Res. Lett. 22, 53-56(1995). [CrossRef]
  6. J. B. Kerr, C. T. McElroy, and W. F. J. Evans, “Mid latitude summertime measurements of stratospheric NO2,” Can. J. Phys. 60, 196-200 (1982). [CrossRef]
  7. J. B. Kerr, W. F. J. Evans, and C. L. Mateer, “Measurements of SO2 in the Mount St. Helens debris,” in Atmospheric Effects and Potential Climatic Impact of the 1980 Eruptions of Mount St. Helens, Conference Publication 2240 (1982), pp. 219-223.
  8. A. Cede, J. Herman, A. Richter, N. Krotkov, and J. Burrows, ”Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode,” J. Geophys. Res. 111, D05304, (2006). [CrossRef]
  9. B. Schmid, J. J. Michalsky, D. W. Slater, J. C. Barnard, R. N. Halthore, J. C. Liljegren, B. N. Holben, T. F. Eck, J. M. Livingston, P. B. Russell, T. Ingold, and I. Slutsker, “Comparison of columnar water-vapor measurements from solar transmittance methods,” Appl. Opt. 40, 1886-1896(2001). [CrossRef]
  10. J. L. Petters, V. K. Saxena, J. R. Slusser, B. N. Wenny, and S. Madronich, “Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model,” J. Geophys. Res. 108(D9), 4288, doi:10.1029/2002JD002360 (2003). [CrossRef]
  11. A. R. Webb, R. Kift, S. Thiel, A. Bais, M. Blumthaler, A. Kylling, and R. M. Schmitt, “Empirical approach to converting spectral UV measurements to actinic flux data,” Proc. SPIE 4482, 104-114 (2002). [CrossRef]
  12. M. Van Weele, J. V.-G. D. Arellano, and F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser.B 1 47, 353-364 (1995). [CrossRef]
  13. S. Kazadzis, A. F. Bais, D. Balis, C. S. Zerefos, and M. Blumthaler, “Retrieval of downwelling UV actinic flux density spectra from spectral measurements of global and direct solar UV irradiance,” J. Geophys. Res. 105(D4), 4857-4864(2000). [CrossRef]
  14. A. F. Bais, ”Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer,” Appl. Opt. 36, 5199-5204 (1997). [CrossRef] [PubMed]
  15. J. Gröbner and J. B. Kerr, “Ground-based determination of the spectral ultraviolet extraterrestrial solar irradiance: providing a link between space-based and ground-based solar UV measurements,” J. Geophys. Res. 106(D7), 7211-7217 (2001). [CrossRef]
  16. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105(D16), 20673-20696 (2000). [CrossRef]
  17. O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements,” J. Geophys. Res. 105(D8), 9791-9806 (2000). [CrossRef]
  18. A. C. Vandaele, C. Fayt, F. Hendrick, C. Hermans, F. Humbled, M. Van ozendael, M. Gil, M. Navarro, O. Puentedura, M. Yela, G. Braathen, K. Stebel, K. Tornkvist, P. Johnston, K. Kreher, F. Goutail, A. Mieville, J. P. Pommereau, S. Khaikine, A. Richter, H. Oetjen, F. Wittrock, S. Bugarski, U. Friess, K. Pfeilsticker, R. Sinreich, T. Wagner, G. Corlett, and R. Leigh, “An intercomparison campaign of ground-based UV-visible measurements of NO2, BrO, and OClO slant columns: methods of analysis and results for NO2,” J. Geophys. Res. 110, D08305, doi: 10.1029/2004JD005423 (2005). [CrossRef]
  19. F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund- Radiative transfer studies and their application,” Atmos. Chem. Phys. 4, 955-966(2004). [CrossRef]
  20. G. Hönninger, C. von Friedeburg, and U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231-254 (2004). [CrossRef]
  21. E. Jäkel, M. Wendisch, M. Blumthaler, R. Schmitt, and A. R. Webb, “A CCD spectroradiometer for ultraviolet actinic radiation measurements,” J. Atmos. Ocean. Technol. 24, 449-462 (2007). [CrossRef]
  22. Hamamatsu, “Technical information, characteristics and use of FFT-CCD area image sensor” (Hamamatsu, 1995), http://sales.hamamatsu.com/assets/applications/SSD/Characteristics_and_use_of__FFT-CCD.pdf.
  23. A. F. Bais, “Spectrometers: operational errors and uncertainties,” C. S. Zerefos and A. F. Bais, eds. (Springer-Verlag, 1997), pp. 163-173.
  24. G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, C. R. Booth, P. Disterhoft, P. Eriksen, R. L. McKenzie, M. Miyauchi, and C. Roy, “Instruments to measure solar ultraviolet irradiance. Part 1: Spectral instruments,” in Global Atmospheric Watch Report No. 125, TD No. 1066 (World Meteorological Organization, Geneve, Switzerland, 2001) p. 30.
  25. G. Bernhard and G. Seckmeyer, “Uncertainty of measurements of spectral solar UV irradiance,” J. Geophys. Res. 104(D12), 14321-14345 (1999). [CrossRef]
  26. A. F. Bais, C. S. Zerefos, and C. T. McElroy, “Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833-836 (1996). [CrossRef]
  27. H. J. Kostkowski, Reliable Spectroradiometry (Spectroradiometery Consulting, 1997), p. 610.
  28. Roper Scientific Inc, “Etaloning in back-illuminated CCDs” (Roper Scientific Inc.), http://www.roperscientific.com/pdfs/technotes/etaloning.pdf.
  29. “QE65000 spectrometer OEM data sheet” (Ocean Optics Inc), http://www.oceanoptics.com/technical/engineering/OEM%20Data%20Sheet%20--%20QE65000.pdf.
  30. C. Sandmeier, C. Muller, B. Hosgood, and G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176-191 (1998). [CrossRef]
  31. M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. Van Den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, J. De Vries, W. Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Remote Sens. 44, 1209-1238(2006). [CrossRef]
  32. The Nordic intercomparison of ultraviolet and total ozone instruemnts at Izana, October 1996. Final report, B. Kjeldstad, B. Johnsen, and T. Koskela,eds., Meteorological Publications, Finnish Meteorological Institute (Finnish Meteorological Institute, Helsinki, 1997), p. 186.
  33. A. F. Bais, B. G. Gardiner, H. Slaper, M. Blumthaler, G. Bernhard, R. McKenzie, A. R. Webb, G. Seckmeyer, B. Kjeldstad, T. Koskela, P. J. Kirsch, J. Gröbner, J. B. Kerr, S. Kazadzis, K. Leszczynski, D. Wardle, W. Josefsson, C. Brogniez, D. Gillotay, H. Reinen, P. Weihs, T. Svenoe, P. Eriksen, F. Kuik, and A. Redondas, “SUSPEN intercomparison of ultraviolet spectroradiometers,” J. Geophys. Res. 106(D12), 12509-12525 (2001). [CrossRef]
  34. H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721-2724 (1995). [CrossRef]
  35. M. E. van Hoosier, The Atlas-3 solar spectrum (1996).
  36. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  37. A. M. Bass and R. J. Paur, “The ultraviolet cross-sections of ozone: I. The measurements,” presented at Atmospheric Ozone; Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, 3-7 Sept. 1984.
  38. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, and R. Colin, “SO2 absorption cross section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25599-52605 (1994). [CrossRef]
  39. C. A. Gueymard, “The sun's total and spectral irradiance for solar energy applications and solar radiation models,” Sol. Energy 76, 423-453 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited