OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1649–1661

Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization

Pornsarp Pornsawad, Christine Böckmann, Christoph Ritter, and Mathias Rafler  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1649-1661 (2008)
http://dx.doi.org/10.1364/AO.47.001649


View Full Text Article

Enhanced HTML    Acrobat PDF (2332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the analysis of Raman lidar measurements of aerosol extinction, it is necessary to calculate the derivative of the logarithm of the ratio between the atmospheric number density and the range-corrected lidar-received power. The statistical fluctuations of the Raman signal can produce large fluctuations in the derivative and thus in the aerosol extinction profile. To overcome this difficult situation we discuss three methods: Tikhonov regularization, variational, and the sliding best-fit (SBF). Three methods are performed on the profiles taken from the European Aerosol Research Lidar Network lidar database simulated at the Raman shifted wavelengths of 387 and 607 nm associated with the emitted signals at 355 and 532 nm . Our results show that the SBF method does not deliver good results for low fluctuation in the profile. However, Tikhonov regularization and the variational method yield very good aerosol extinction coefficient profiles for our examples. With regard to, e.g., the 532 nm wavelength, the L 2 errors of the aerosol extinction coefficient profile by using the SBF, Tikhonov, and variational methods with respect to synthetic noisy data are 0.0015(0.0024), 0.00049(0.00086), and 0.00048(0.00082), respectively. Moreover, the L 2 errors by using the Tikhonov and variational methods with respect to a more realistic noisy profile are 0.0014(0.0016) and 0.0012(0.0016), respectively. In both cases the L 2 error given in parentheses concerns the second example.

© 2008 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(100.3190) Image processing : Inverse problems
(280.1100) Remote sensing and sensors : Aerosol detection
(290.2200) Scattering : Extinction
(290.5860) Scattering : Scattering, Raman

ToC Category:
Scattering

History
Original Manuscript: December 3, 2007
Manuscript Accepted: January 22, 2008
Published: March 31, 2008

Citation
Pornsarp Pornsawad, Christine Böckmann, Christoph Ritter, and Mathias Rafler, "Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization," Appl. Opt. 47, 1649-1661 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).
  2. R. M. Harrison and R. E. van Grieken, eds., Atmospheric Particles (Wiley, 1998).
  3. G.V.Rao, S.Raman, and M.P.Singh, eds., Air Quality (Birkhäuser, Basel, 2003). [CrossRef]
  4. S.Solomon, D.Qin, M.Manning, Z.Chen, M.Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007). [PubMed]
  5. G. Fiocco and G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323-324 (1964). [CrossRef]
  6. A. Ansmann, M. Riebsell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746-748 (1990); http://www.opticsinfobase.org/abstract.cfm?URI=ol-15-13-746. [CrossRef] [PubMed]
  7. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter Lidar,” Appl. Opt. 31, 7113-7131 (1992); http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-33-7113. [CrossRef] [PubMed]
  8. A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar-Range-resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2004), pp. 105-141.
  9. G. Pappalardo, J. Bosenberg, D. Balis, A. Boselli, L. Komguem, G. Larcheveque, V. Matthias, L. Mona, I. Mattis, A. Papayannis, M. R. Perrone, and V. Rizi, “EARLINET Measurements of the aerosol extinction-to-backscatter ratio,” in Proceedings of the XXI International Laser Radar Conference Part I (2002), pp. 301-304.
  10. J. A. Cooney, J. Orr, and C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscattering,” Nature 224, 1098-1099 (1969); http://www.nature.com/nature/journal/v224/n5224/abs/2241098a0.html. [CrossRef]
  11. S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605-1610 (1972); http://www.opticsinfobase.org/abstract.cfm?URI=ao-11-7-1605. [CrossRef] [PubMed]
  12. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosol in the Earth's atmosphere,” Appl. Opt. 31, 3068-3082 (1992); http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-16-3068. [CrossRef] [PubMed]
  13. D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360-3369 (1999); http://www.opticsinfobase.org/abstract.cfm?id=44053. [CrossRef]
  14. F. Russo, D. N. Whiteman, B. Demoz, and R. M. Hoff, “Validation of the Raman lidar algorithm for quantifying aerosol extinction,” Appl. Opt. , 45, 7073-7088 (2006). [CrossRef] [PubMed]
  15. J. Bösenberg, V. Matthias, A. Amodeo, V. Amoridis, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlsson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. De Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, A. Mekler, I. Mironova, V. Mitev, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, F. Rocadenbosch, J. A. Rodrigues, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewski, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: a European aerosol research lidar network to establish an aerosol climatology,” Rep. 348 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003), http://lidarb.dkrz.de/earlinet.
  16. V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43, 961-971 (2004). [CrossRef] [PubMed]
  17. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977-989 (2004). [CrossRef] [PubMed]
  18. C. Böckmann and G. Pappalardo, “Report on the inter-comparison of algorithms for new stations” (personal communication, 2007), http://earlinet.org/.
  19. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Mathias, V. Amiridis, F. de Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370-5385 (2004). [CrossRef] [PubMed]
  20. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter data by inversion with regularization: theory,” Appl. Opt. 38, 2346-2357 (1999); http://ao.osa.org/abstract.cfm?&id=44053 [CrossRef]
  21. C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multi-wavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329-1342 (2001). [CrossRef]
  22. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. Whitemann, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685-3699 (2002). [CrossRef] [PubMed]
  23. C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A. 22, 518-528 (2005); http://josaa.osa.org/abstract.cfm?id=82767. [CrossRef]
  24. C. Böckmann and A. Kirsche, “Iterative regularization method for lidar remote sensing,” Comput. Phys. Commum. 174, 607-615 (2006); http://adsabs.harvard.edu/abs/2006CoPhC.174..607B. [CrossRef]
  25. Y. Wang, S. Fan, X. Feng, G. Yan, and Y. Guan, “Regularized inversion method for retrieval of aerosol particle size distribution function in W1,2 space,” Appl. Opt. 45, 7456-7467 (2006). [CrossRef] [PubMed]
  26. Y. Wang, S. Fan, and X. Feng, “Retrieval of the aerosol particle size distribution function by incorporating a priori information,” J. Aerosol Sci. 38, 885-901 (2007). [CrossRef]
  27. A. Savityky and M. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627-1639 (1964). [CrossRef]
  28. M. Hanke and O. Scherzer, “Inverse problem light: numerical differentiation,” Am. Math. Monthly 108, 512-521 (2001); http://www.ams.org/mathscinet-getitem?mr=1840657. [CrossRef]
  29. C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177-183 (1967). [CrossRef]
  30. Y. B. Wang, X. Z. Jia, and J. Cheng, “A numerical differentiation method and its application to reconstruction of discontinuity,” Inverse Probl. 18, 1461-1476 (2002). [CrossRef]
  31. W. A. Coppel, Disconjugacy (Springer-Verlag, 1971).
  32. I. Knowles and R. Wallace, “A variational method for numerical differentiation,” Numer. Math. 70, 91-110 (1995). [CrossRef]
  33. J. D. Pryce, Numerical Solution of Sturm-Liouville Problems (Clarendon Press, 1993).
  34. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited