OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1649–1661

Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization

Pornsarp Pornsawad, Christine Böckmann, Christoph Ritter, and Mathias Rafler  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1649-1661 (2008)
http://dx.doi.org/10.1364/AO.47.001649


View Full Text Article

Enhanced HTML    Acrobat PDF (2332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the analysis of Raman lidar measurements of aerosol extinction, it is necessary to calculate the derivative of the logarithm of the ratio between the atmospheric number density and the range-corrected lidar-received power. The statistical fluctuations of the Raman signal can produce large fluctuations in the derivative and thus in the aerosol extinction profile. To overcome this difficult situation we discuss three methods: Tikhonov regularization, variational, and the sliding best-fit (SBF). Three methods are performed on the profiles taken from the European Aerosol Research Lidar Network lidar database simulated at the Raman shifted wavelengths of 387 and 607 nm associated with the emitted signals at 355 and 532 nm . Our results show that the SBF method does not deliver good results for low fluctuation in the profile. However, Tikhonov regularization and the variational method yield very good aerosol extinction coefficient profiles for our examples. With regard to, e.g., the 532 nm wavelength, the L 2 errors of the aerosol extinction coefficient profile by using the SBF, Tikhonov, and variational methods with respect to synthetic noisy data are 0.0015(0.0024), 0.00049(0.00086), and 0.00048(0.00082), respectively. Moreover, the L 2 errors by using the Tikhonov and variational methods with respect to a more realistic noisy profile are 0.0014(0.0016) and 0.0012(0.0016), respectively. In both cases the L 2 error given in parentheses concerns the second example.

© 2008 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(100.3190) Image processing : Inverse problems
(280.1100) Remote sensing and sensors : Aerosol detection
(290.2200) Scattering : Extinction
(290.5860) Scattering : Scattering, Raman

ToC Category:
Scattering

History
Original Manuscript: December 3, 2007
Manuscript Accepted: January 22, 2008
Published: March 31, 2008

Citation
Pornsarp Pornsawad, Christine Böckmann, Christoph Ritter, and Mathias Rafler, "Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization," Appl. Opt. 47, 1649-1661 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1649

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited