OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1662–1667

Refractive index variation in compression molding of precision glass optical components

Lijuan Su, Yang Chen, Allen Y. Yi, Fritz Klocke, and Guido Pongs  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1662-1667 (2008)
http://dx.doi.org/10.1364/AO.47.001662


View Full Text Article

Enhanced HTML    Acrobat PDF (795 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Compression molding of glass optical components is a high volume near net-shape precision fabrication method. In a compression molding process, a variation of the refractive index occurs along the radial direction of the glass component due to thermal treatment. The variation of refractive index is an important parameter that can affect the performance of optical lenses, especially lenses used for high precision optical systems. Refractive index variations in molded glass lenses under different cooling conditions were investigated using both an experimental approach and a numerical simulation. Specifically, refractive index variations inside molded glass lenses were evaluated by measuring optical wavefront variations with a Shack–Hartmann sensor system. The measured refractive index variations of the molded glass lenses were compared with the numerical simulation as a validation of the modeling approach.

© 2008 Optical Society of America

OCIS Codes
(220.4610) Optical design and fabrication : Optical fabrication
(290.3030) Scattering : Index measurements

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: December 21, 2007
Manuscript Accepted: February 7, 2008
Published: March 31, 2008

Citation
Lijuan Su, Yang Chen, Allen Y. Yi, Fritz Klocke, and Guido Pongs, "Refractive index variation in compression molding of precision glass optical components," Appl. Opt. 47, 1662-1667 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1662


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. O. Maschmeyer, C. A. Andrysick, T. W. Geyer, H. E. Meissner, C. J. Parker, and L. M. Sanford, “Precision molded glass optics,” Appl. Opt. 22, 2410-2412 (1983). [CrossRef] [PubMed]
  2. H. Loch and D. Krause, Mathematical Simulation in Glass Technology (Springer, 2002). [CrossRef]
  3. G. W. Scherer, Relaxation in Glass and Composites (Wiley, 1986).
  4. T. F. Soules, R. F. Busbey, S. M. Berkhson, and A. Markovsky, “Finite element calculation of stresses in glass parts undergoing viscous relaxation,” J. Am. Ceram. Soc. 70, 90-95 (1987). [CrossRef]
  5. O. S. Narayanaswamy, “A model of structural relaxation in glass,” J. Am. Ceram. Soc. 54, 491-498 (1971). [CrossRef]
  6. A. Jain and A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during glass lens forming process,” J. Am. Ceram. Soc. 88, 530-535 (2005). [CrossRef]
  7. Y. Chen, L. Su, and A. Y. Yi, “Numerical simulation and experiment study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng. (to be published).
  8. T. Dennis, E. M. Gill, and S. L. Gilbert, “Interferometric measurement of refractive-index change in photosensitive glass,” Appl. Opt. 40, 1663-1667 (2001). [CrossRef]
  9. S. A. Alexandrov and I. V. Chenyh, “Interference method for determination of refractive index and thickness,” Opt. Eng. 39, 2480-2486 (2000). [CrossRef]
  10. H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, and M. Haruna, “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Appl. Opt. 41, 1315-1322 (2002). [CrossRef] [PubMed]
  11. G. Coppola, P. Ferraro, M. Iodice, and S. D. Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Appl. Opt. 42, 3882-3887 (2003). [CrossRef] [PubMed]
  12. M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. , 15, 1531-1535 (2004). [CrossRef]
  13. B. C. Platt and R. Shack, “Lenticular Hartmann-screen,” Opt. Sci. Cent. Newsl. Univ. Ariz. 5, 15-16 (1971).
  14. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577 (2001).
  15. B. M. Welsh, B. L. Ellerbroek, M. C. Roggemann, and T. L. Pennington, “Fundamental performance comparison of a Hartmann and shearing interferometer wave-front sensor,” Appl. Opt. 34, 4186-4195 (1995). [CrossRef] [PubMed]
  16. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. V. Atta, B. M. V. Wonterghem, W. T. Whistler, S. E. Winter, and B. W. Woods, “Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540-4546 (2000). [CrossRef]
  17. H. N. Ritland, “Relation between refractive index and density of a glass at a constant temperature,” J. Am. Ceram. Soc. 3886-88 (1955). [CrossRef]
  18. G. Joos, “Change of refractive index, density, and molecular refraction in tempering of glasses,” Optik (Jena) 1, 320-323 (1946).
  19. A. Jain, “Experimental Study and Numerical Analysis of Compression Molding Process for Manufacturing Precision Aspherical Glass Lenses,” Ph. D. dissertation (The Ohio State University, 2006).
  20. A. Y. Yi, “Optical fabrication,” in The Optics Encyclopedia, T. G. Brown, K. Kreath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber, eds. (Academic, 2003), pp. 1945-1959.
  21. A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses--a combined experimental and numerical analysis,” J. Am. Ceram. Soc. , 88, 579-586 (2005) [CrossRef]
  22. A. Y. Yi, Y. Chen, F. Klocke, G. Pongs, A. Demmer, D. Grewell, and A. Benatar, “A high volume precision compression molding process of glass diffractive optics by use of micromachined fused silica wafer mold and low Tg optical glass,” J. Micromech. Microeng. 16, 2000-2005 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited