OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1684–1696

Quantitative phase measurements using optical quadrature microscopy

Willie S. Rockward, Anthony L. Thomas, Bing Zhao, and Charles A. DiMarzio  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. 1684-1696 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (9489 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging of phase or optical path length is becoming more important with the development of better imaging systems, computational algorithms, faster computers, and a greater interest in the imaging of transparent objects. Early phase imaging involved qualitative imaging of phase gradients. New computational algorithms can be used to extract some quantitative phase imaging from these techniques. In contrast, new hardware has enabled full-field quantitative phase imaging on a practical and cost-effective scale. We explore a quantitative comparison between two techniques for imaging phase. In the first technique, phase is recovered from a pair of differential interference contrast images, and in the second technique, phase is measured pixel-by-pixel interferometrically. It is shown, experimentally, that the overall results are similar, but each technique has its own advantages and disadvantages.

© 2008 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.4980) Imaging systems : Partial coherence in imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.1790) Microscopy : Confocal microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:
Imaging Systems

Original Manuscript: October 8, 2007
Manuscript Accepted: January 3, 2008
Published: March 27, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Willie S. Rockward, Anthony L. Thomas, Bing Zhao, and Charles A. DiMarzio, "Quantitative phase measurements using optical quadrature microscopy," Appl. Opt. 47, 1684-1696 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. C. Warger, G. S. Laevsky, D. J. Townsend, M. Rajadhyaksha, and C. A. DiMarzio, “Multimodal optical microscope for detecting viability of mouse embryos in vitro,” J. Biomed. Opt. 12, 440-446 (2007). [CrossRef]
  2. J. A. Newmark, W. C. Warger, C.-C. Chang, G. E. Herrera, D. H. Brooks, C. A. DiMarzio, and C. M. Warner, “Determination of the number of cells in preimplantation embryos by using non-invasive optical quadrature microscopy in conjunction with differential interference contrast microscopy,” Microsc. Microanal. 13, 118 (2007). [CrossRef] [PubMed]
  3. D. J. Townsend, K. D. Quarles, A. L. Thomas, W. S. Rockward, C. M. Warner, J. A. Newmark, and C. A. DiMarzio, “Quantitative phase measurements using a quadrature tomographic microscope,” Proc. SPIE 4964, 59-65 (2003). [CrossRef]
  4. W. C. Warger, J. A. Newmark, B. Zhao, C. M. Warner, and C. A. DiMarzio, “Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy,” Proc. SPIE 6090, 30-41 (2006).
  5. W. C. Warger, J. A. Newmark, C.-C. Chang, D. H. Brooks, C. M. Warner, and C. A. DiMarzio,“ Optical quadrature and differential interference constrast to facilitate embryonic cell counts with fluorescence imaging for confirmation,” Proc. SPIE 5699, 334-341 (2005). [CrossRef]
  6. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503-2505 (2004). [CrossRef] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  8. D. C. O'Shea, J. Belectic, and M. Poutous, “Binary-mask generation for diffractive optical elements using microcomputers,” Appl. Opt. 32, 2566-2572 (1993). [CrossRef] [PubMed]
  9. T. J. Suleski and D. C. O'Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commerical slide imagers,” Appl. Opt. 34, 7507-7517 (1995). [CrossRef] [PubMed]
  10. D. C. O'Shea and W. S. Rockward, “Gray-scale masks for diffractive-optics fabrication: II. spatially filtered halftone screens,” Appl. Opt. 34, 7518-7526 (1995). [CrossRef] [PubMed]
  11. freehand is a trademark of the Macromedia Corporation, San Francisco, Calif.
  12. D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, “Three-dimensional images generated by quadrature interferometry,” Opt. Lett. 23, 783-785 (1998). [CrossRef]
  13. C. A. DiMarzio, A. J. Devaney, and S. C. Lindberg, “Optical quadrature interferometry utilizing polarizing optics,” U.S. patent 5,883,717 (16 March 1999).
  14. D. Malacara, Z. Malcacara, and M. Servin, Interferogram Analysis for Optical Testing (Dekker, 2005). [CrossRef]
  15. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121-127 (1985). [CrossRef]
  16. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  17. R. Balmer, “Can one see the Ewald sphere?,” Appl. Opt. 27, 2012-2016 (1998).
  18. M. Pluta, Advanced Light Microscopy: Principles and Basic Properties (Elsevier, 1988).
  19. D. S. Wan, J. Schmit, and E. Novak, “Effects of source shape on the numerical aperture factor with a geometrical-optics model,” Appl. Opt. 43, 2023 (2004). [CrossRef] [PubMed]
  20. F. Dubois, J. Selb, L. Vabre, and A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 43, 2326-2331 (2004).
  21. C. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775-3783 (1990). [CrossRef] [PubMed]
  22. C. J. R. Sheppard and H. J. Matthews, “Imaging in high-aperture optical systems,” J. Opt. Soc. Am. A 4, 1354-1360(2004). [CrossRef]
  23. M. Pluta, Advanced Light Microscopy: Specialized Methods (Elsevier, 1989).
  24. N. Axelrod, A. Radko, A. Lewis, and N. Ben-Yosef, “Topographic profiling and refractive-index analysis by use of differential interference contrast with bright-field intensity and atomic force imaging,” Appl. Opt. 43, 2272-2284(2004). [CrossRef] [PubMed]
  25. C. J. Cogswell and J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81-101 (1992). [CrossRef]
  26. C. Preza, D. L. Snyder, and J. Conchello, “Theoretical development and experimental evaluation of imaging models for differential interference contrast microscopy,” J. Opt. Soc. Am. A 16, 2185-2199 (1999). [CrossRef]
  27. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7-12(2004). [CrossRef] [PubMed]
  28. T. Yamamoto, “Coherence theory of source-size compensation in interference microscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier), pp. 295-341.
  29. M. Francon and S. Mallick, Polarization Interferometers (Wiley, 1971).
  30. P. A. Jansson, Deconvolution of Images and Spectra (Academic, 1997).
  31. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810-2816(1987). [CrossRef] [PubMed]
  32. B. Zhao and A. Asundi, “Discussion on spatial resolution and sensitivity of Fourier transform fringe detection,” Opt. Eng. 39, 2715-2719 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited