OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: B128–B138

Impact of measurement precision and noise on superresolution image reconstruction

Sally L. Wood, Shu-Ting Lee, Gao Yang, Marc P. Christensen, and Dinesh Rajan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. B128-B138 (2008)
http://dx.doi.org/10.1364/AO.47.00B128


View Full Text Article

Enhanced HTML    Acrobat PDF (8814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of uniform and nonuniform detector arrays for application to the PANOPTES (processing arrays of Nyquist-limited observations to produce a thin electro-optic sensor) flat camera design is analyzed for measurement noise environments including quantization noise and Gaussian and Poisson processes. Image data acquired from a commercial camera with 8   bit and 14   bit output options are analyzed, and estimated noise levels are computed. Noise variances estimated from the measurement values are used in the optimal linear estimators for superresolution image reconstruction.

© 2008 2008 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.0110) Imaging systems : Imaging systems

ToC Category:
Imaging Systems

History
Original Manuscript: September 13, 2007
Revised Manuscript: January 2, 2008
Manuscript Accepted: February 24, 2008
Published: March 31, 2008

Citation
Sally L. Wood, Shu-Ting Lee, Gao Yang, Marc P. Christensen, and Dinesh Rajan, "Impact of measurement precision and noise on superresolution image reconstruction," Appl. Opt. 47, B128-B138 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-B128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chaudhuri, ed. Super-Resolution Imaging (Kluwer Academic, 2001).
  2. M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6, 1646-1658(1997). [CrossRef]
  3. M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space invariant blur,” IEEE Trans. Image Process. 10, 1187-1193(2001). [CrossRef]
  4. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super-resolution, ” IEEE Trans. Image Process. 13, 1327-1344 (2004). [CrossRef]
  5. P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution, EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
  6. D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registration of aliased images using variable projection with applications to superresolution ,” Comput. J. (April/May 2007). [CrossRef]
  7. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001). [CrossRef]
  8. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719-1727 (2004). [CrossRef] [PubMed]
  9. K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893-2900 (2006). [CrossRef] [PubMed]
  10. M. P. Christensen, V. Bhakta, D. Rajan, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of views,” Appl. Opt. 45, 2884-2892 (2006). [CrossRef] [PubMed]
  11. S. L. Wood, B. J. Smithson, D. Rajan, and M. P. Christensen, “Performance of a MVE algorithm for compound eye image reconstruction using lens diversity,” IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2005), Vol. II, pp. 593-596.
  12. S. L. Wood, Hsueh-Ban Lan, D. Rajan, and M. Christensen, “Improved multiplexed image reconstruction performance through optical system diversity design,” IEEE International Conference on Image Processing (IEEE, 2006), p. 2717. [CrossRef]
  13. H.-B. Lan, S. L. Wood, M. P. Christensen, and D. Rajan, “Benefits of optical system diversity for multiplexed image reconstruction,” Appl. Opt. 45, 2859-2870 (2006). [CrossRef] [PubMed]
  14. R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, 1995).
  15. A. Macovski, Medical Imaging Systems (Prentice-Hall, 1983).
  16. Z.-H. Cho, J. P. Jones, and M. Singh, Foundations of Medical Imaging (Wiley, 1993).
  17. S. L. Wood, G. Yang, M. P. Christensen, and D. Rajan, “Effect of measurement precision on super-resolution image reconstruction”, presented at the OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Vancouver, British Columbia, 18-20 June 2007..
  18. S. Mitra, Digital Signal Processing, 3rd ed. (Prentice-Hall, 2006).
  19. A. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited