OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: B44–B51

Single disperser design for coded aperture snapshot spectral imaging

Ashwin Wagadarikar, Renu John, Rebecca Willett, and David Brady  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. B44-B51 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a single disperser spectral imager that exploits recent theoretical work in the area of compressed sensing to achieve snapshot spectral imaging. An experimental prototype is used to capture the spatiospectral information of a scene that consists of two balls illuminated by different light sources. An iterative algorithm is used to reconstruct the data cube. The average spectral resolution is 3.6 nm per spectral channel. The accuracy of the instrument is demonstrated by comparison of the spectra acquired with the proposed system with the spectra acquired by a nonimaging reference spectrometer.

© 2008 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6190) Spectroscopy : Spectrometers

Original Manuscript: September 10, 2007
Manuscript Accepted: November 28, 2007
Published: February 8, 2008

Ashwin Wagadarikar, Renu John, Rebecca Willett, and David Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, B44-B51 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H.-L. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001). [CrossRef]
  2. C. M. Stellman, F. M. Olchowski, and J. V. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001). [CrossRef]
  3. R. P. Lin, B. R. Dennis, and A. O. Benz, eds., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI)--Mission Description and Early Results (Kluwer Academic, 2003). [PubMed]
  4. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000). [CrossRef]
  5. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998). [CrossRef]
  6. E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, "Imaging spectrometer for process industry applications," Proc. SPIE 2248, 33-40 (1994). [CrossRef]
  7. H. Morris, C. Hoyt, and P. Treado, "Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters," Appl. Spectrosc. 48, 857-866 (1994). [CrossRef]
  8. C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, "Imaging Fourier transform spectrometer," Proc. SPIE 1937, 191-200 (1993). [CrossRef]
  9. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and M. E. Sullivan, "Static two-dimensional aperture coding for multimodal multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006). [CrossRef] [PubMed]
  10. Q. Hanley, P. Verveer, D. Arndt-Jovin, and T. Jovin, "Three dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope," J. Microsc. 197, 5-14 (2000). [CrossRef] [PubMed]
  11. J. M. Mooney, V. E. Vickers, M. An, and A. K. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997). [CrossRef]
  12. D. J. Brady and M. E. Gehm, "Compressive imaging spectrometers using coded apertures," Proc. SPIE 6246, 62460A (2006). [CrossRef]
  13. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thorne, A. B. Schumacher, D. W. Wilson, and P. D. Maker, "Demonstration of a high-speed nonscanning imaging spectrometer," Opt. Lett. 22, 1271-1273 (1997). [CrossRef] [PubMed]
  14. W. R. Johnson, D. W. Wilson, and G. Bearman, "Spatial-spectral modulating snapshot hyperspectral imager," Appl. Opt. 45, 1898-1908 (2006). [CrossRef] [PubMed]
  15. M. E. Gehm, R. John, R. Willett, T. Schultz, and D. Brady, "Single-shot compressive spectral imaging with a dual disperser architecture," Opt. Express 15, 14013-14027 (2007). [CrossRef] [PubMed]
  16. D. J. Schroeder, Astronomical Optics (Academic, 1987).
  17. E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory 52, 489-509 (2006). [CrossRef]
  18. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput. 20, 33-61 (1999). [CrossRef]
  19. R. Tibshirani, "Regression shrinkage and selection via the lasso," J. R. Stat. Soc. Ser. B 58, 267-288 (1996).
  20. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems," IEEE J. Sel. Top. Signal Process. 1, 586-597 (2007). [CrossRef]
  21. Y.-H. Dai and R. Fletcher, "Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming," Numer. Math. 100, 21-47 (2005). [CrossRef]
  22. http://www.lx.it.pt/~mtf/GPSR/.
  23. M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Academic, 1979).
  24. A. A. Wagadarikar, M. E. Gehm, and D. J. Brady, "Performance comparison of aperture codes for multimodal, multiplex spectroscopy," Appl. Opt. 46, 4932-4942 (2007). [CrossRef] [PubMed]
  25. J. M. Lerner, "Imaging spectrometer fundamentals for researchers in the biosciences--a tutorial," Cytometry Part A 69(8), 712-734 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited