OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: B52–B63

Image identification system based on an optical broadcast neural network and a pulse coupled neural network preprocessor stage

Horacio Lamela and Marta Ruiz-Llata  »View Author Affiliations

Applied Optics, Vol. 47, Issue 10, pp. B52-B63 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the concept of a vision system based on an optoelectronic hardware neural processor. The proposed system is composed of a pulse coupled neural network (PCNN) preprocessor stage that converts an input image into a temporal pulsed pattern. These pulses are inputs to the optical broadcast neural network (OBNN) processor, which classifies the input pattern between a set of reference patterns based on a pattern matching strategy. The PCNN is to provide immunity to the scale, rotation, and translation of objects in the image. The OBNN provides high parallelism and a high speed hardware neural processor.

© 2008 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(200.4700) Optics in computing : Optical neural systems

Original Manuscript: September 5, 2007
Revised Manuscript: December 21, 2007
Manuscript Accepted: January 3, 2008
Published: February 22, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Horacio Lamela and Marta Ruiz-Llata, "Image identification system based on an optical broadcast neural network and a pulse coupled neural network preprocessor stage," Appl. Opt. 47, B52-B63 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003). [CrossRef]
  2. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4, 4-22 (April 1987).
  3. Neuricam, “NC1503-VISoc CMOS intelligent vision system-on-chip,” data sheet; http://www.neuricam.com/.
  4. AnaLogic, “Bi-i V301F. high-speed smart camera,” product features; http://www.analogic-computers.com/.
  5. L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign,”IEEE Trans. Neural Netw. 14, 176-194 (2003). [CrossRef]
  6. M. Ruiz-Llata and H. Lamela, “Image identification system based on the optical broadcast neural network processor,” Appl. Opt. 44, 2366-2376 (2005). [CrossRef] [PubMed]
  7. H. Lamela and M. Ruiz-Llata, “Optoelectronic neural processor for smart vision applications,”Imaging Sci. J. 55(4), 197-205 (2007). [CrossRef]
  8. D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip learning,” in International Joint Conference on Neural Networks II (IEEE, 1990), pp. 537-544. [CrossRef]
  9. D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core implementation of a self-organizing neural network,” IEEE Trans. Neural Netw. 14, 1085-1096 (2003). [CrossRef]
  10. D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: theory, algorithm and FPGA implementation,” IEEE Trans. Neural Netw. 14, 993-1009 (2003). [CrossRef]
  11. M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN),” in International Joint Conference on Neural Networks II (IEEE, 1989), pp. 191-196. [CrossRef]
  12. J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004). [CrossRef]
  13. F. T. S. Yu and D. A. Gregory, “Optical pattern recognition: architectures and techniques,” Proc. IEEE 84, 733-752 (1996). [CrossRef]
  14. G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994). [CrossRef]
  15. K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003). [CrossRef]
  16. M. Ruiz-Llata, “Diseño e implementación de redes neuronales optoelectrónicas: aplicación en sistemas de visión,” Ph.D. dissertation (Universidad Carlos III de Madrid, May 2005).
  17. J. Johnson, M. Padgett, and O. Omidvar, “Overview of pulse coupled neural network (PCNN) special issue,” IEEE Trans. Neural Netw. 10, 461-463 (1999). [CrossRef]
  18. T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural Networks, 2nd ed. (Springer, 2005).
  19. J. L. Jonhson and M. L. Padgett, “PCNN models and applications,”IEEE Trans. Neural Netw. 10, 480-498 (1999). [CrossRef]
  20. U. Ekblad and J. M. Kinser, “Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars, and nuclear explosion test,” Signal Process. 84, 1131-1146 (2004). [CrossRef]
  21. Y. Ota and B. M. Wilamowski, “Analog implementation of pulse-coupled neural networks,”IEEE Trans. Neural Netw. 10, 539-544 (1999). [CrossRef]
  22. J. L. Johnson, “Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images,” Appl. Opt. 33, 6239-6523 (1994). [CrossRef] [PubMed]
  23. D. L. Wang, “The time dimension for scene analysis,” IEEE Trans. Neural Netw. 16, 1401-1426 (2005). [CrossRef] [PubMed]
  24. M. Ruiz-Llata, H. Lamela, and C. Warde, “Design of a compact neural network based on an optical broadcast architecture,” Opt. Eng. 44, 055401 (2005). [CrossRef]
  25. H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).
  26. M. Ruiz-Llata and H. Lamela, “Fast optoelectronic neural network for vision applications,”Lecture Notes Comput. Sci. 3512, 502-509 (2005). [CrossRef]
  27. International Technology Roadmap for Semiconductors; http://public.itrs.net/. (2006).
  28. K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proc. IEEE 85, 1730-1739 (1997). [CrossRef]
  29. T. K. Woodward and A. V. Krishnamoorthy, “1 Gbit/s CMOS photoreceiver with integrated photodetector operating at 850 nm,” Electron. Lett. 34, 1252-1253 (1998). [CrossRef]
  30. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010-2030 (2003). [CrossRef]
  31. J. F. Ahadian and C. G. Fonstad, Jr., “Epitaxy-on-electronics technology for monolithic optoelectronic integration: foundations, development, and status,” Opt. Eng. 37, 3161-3174 (1998). [CrossRef]
  32. M. W. Haney, H. Thienpont, and T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347-349 (2003). [CrossRef]
  33. L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004). [CrossRef]
  34. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007). [CrossRef] [PubMed]
  35. R. Genov and G. Cauwenberghts, “Kerneltron: support vector machine in silicon,”IEEE Trans. Neural Netw. 14, 1426-1434 (2003). [CrossRef]
  36. J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited