OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1711–1717

Control of the diffracted response of wire arrays with double periods

Marcelo Lester, Diana C. Skigin, and Ricardo A. Depine  »View Author Affiliations

Applied Optics, Vol. 47, Issue 11, pp. 1711-1717 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2706 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The possibility of controlling the diffracted response of a periodic structure is investigated by using dual-period arrays, i.e., periodic arrays with a compound unit cell. We consider wire gratings in which each period comprises several cylinders with circular cross sections and all the cylinder axes are contained in the same plane. It is shown that this kind of structure permits one to control the diffracted response, regardless of the cylinder material and the incident polarization. Our numerical results suggest that the effect produced by wire gratings with dual-period characteristics is basically a geometric effect, and it can be present for other shapes of individual scatterers within each subarray.

© 2008 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(260.1960) Physical optics : Diffraction theory

ToC Category:
Diffraction and Gratings

Original Manuscript: October 9, 2007
Revised Manuscript: February 5, 2008
Manuscript Accepted: February 11, 2008
Published: April 4, 2008

Marcelo Lester, Diana C. Skigin, and Ricardo A. Depine, "Control of the diffracted response of wire arrays with double periods," Appl. Opt. 47, 1711-1717 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005). [CrossRef]
  2. Z. S. Li, C. X. Kan, and W. P. Cai, “Tunable optical properties of nanostructured-gold mesoporous-silica assembly,” Appl. Phys. Lett. 82, 1392-1394 (2003). [CrossRef]
  3. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003). [CrossRef]
  4. J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005). [CrossRef]
  5. G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  7. W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000). [CrossRef]
  8. A. Hibbins and J. R. Sambles, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410-2412 (2002). [CrossRef]
  9. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005). [CrossRef]
  10. J.-F. Lepage and N. McCarthy, “Analysis of the diffractional properties of dual-period apodizing gratings: theoretical and experimental results,” Appl. Opt. 43, 3504-3512 (2004). [CrossRef] [PubMed]
  11. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal--semiconductor-metal photodetectors,” J. Opt. A Pure Appl. Opt. 8, 175181 (2006). [CrossRef]
  12. D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, “Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors,” Opt. Express 14, 2047-2061 (2006). [CrossRef] [PubMed]
  13. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365-2373 (2005). [CrossRef]
  14. Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007). [CrossRef]
  15. A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001). [CrossRef]
  16. S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002). [CrossRef]
  17. D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003). [CrossRef]
  18. R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007). [CrossRef]
  19. J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006). [CrossRef] [PubMed]
  20. J. Le Perchec, A. Barbara, P. Quemerais, and T. López-Ríos, “Role of commensurate arrangements in the optical response of metallic gratings,” ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.
  21. D. C. Skigin and R. A. Depine, “Transmission resonances in metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005). [CrossRef] [PubMed]
  22. D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006). [CrossRef]
  23. D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structures gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006). [CrossRef]
  24. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006). [CrossRef] [PubMed]
  25. D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007). [CrossRef]
  26. V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998). [CrossRef]
  27. D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999). [CrossRef]
  28. J. S. Uppal, P. K. Gupta, and R. G. Harrison, “Aperiodic ruling for the measurement of Gaussian laser beam diameters,” Opt. Lett. 14, 683-685 (1989). [CrossRef] [PubMed]
  29. D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385-1391 (2007). [CrossRef] [PubMed]
  30. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298-1309 (1995). [CrossRef]
  31. L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007). [CrossRef]
  32. M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A Pure Appl. Opt. 9, 81-87 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited